Chapter 3. Calcium Sulfates: Sources, Properties and Applications


Emna Melliti, Alma Mejri and Hamza Elfil
Desalination and Natural Water Valorization Laboratory (LaDVEN), Water Researches and Technologies Center (CERTE), Soliman, Tunisia

Chapter DOI: 10.52305/VJZP3842
Part of the Book: Advances in Environmental Research. Volume 92


Nowadays, calcium sulfates are attracting widespread interest due to their exceptional proprieties including easy fabrication, low cost, environmental friendless, and low thermal conductivity. Especially, gypsum is extracted extensively for use as a crucial component in plaster and cement industries, as well as food and agriculture sectors. However, calcium sulfates could cause major damages in several industrial processes that rely on water-handling systems such as water desalination, oil and gas production, etc. In fact, the precipitation of calcium sulfate phases leads to the deposition of undesired solids in pipes, filters, membranes, and heat exchangers, thus forming mineral scales. The removing or cleaning process of the formed scale is extremely expensive and affects the efficiency and lifetime of separation technologies. In this context, the foremost aim of this chapter is to review the current state of knowledge on the formation approaches (nucleation, crystal growth…) and the properties of calcium sulfates. Furthermore, the problems of calcium sulfate scale and methods of its inhibition are discussed. To give the reader clearer vision, calcium sulfate application fields have been described in this work.

Keywords: calcium sulfates, nucleation, crystal growth, solubility, diagram phases, precipitation water treatment, cement, plasters


Alexander E.S. Van Driessche, Tomasz M. Stawski, Liane G. Benning, and Matthias Keller Meier (2017) Calcium Sulfate Precipitation Throughout Its Phase Diagram, Springer International Publishing Switzerland.

Aldrich D.G., Jr., and W.R. Schoonoever. 1951. Gypsum and other sulfur materials for soil conditioning. Calif. Agric. Expt. Sta. circular No. 403.

Amezketa E., Aragüés R., Gazol R., (2005) Efficiency of Sulfuric Acid, Mined Gypsum, and Two Gypsum By-Products in Soil Crusting Prevention and Sodic Soil Reclamation, American Society of Agronomy columns.

Amiri, M. Moghadasi, Jamialahmadi J.M., Pordel Shahri M., The Study of Calcium Sulfate Scale Formation during Water Injection in Iranian Oil Fields at Different Pressures, Energy Sources, Part A, 35:648–658, 2013.

Antony A., Low J.H., Gray S., Childress A.E., Le-Clech P., Leslie G. “Scale formation and control in high pressure membrane water treatment systems: a review.” J. Membr. Sci. 383 (2011): 1-16.

Aquilano D., Otálora F., Pastero L., García-Ruiz J.M. Three study cases of growth morphology in minerals: Halite, Calcite and gypsum. 2016 Progress in Crystal Growth and Characterization of Materials 62 227–251228.

Azimi G., Papangelakis V.G., Dutrizac J.E. (2007) Modelling of calcium sulphate solubility in concentrated multi-component sulphate solutions. Fluid Phase Equilib 260:300–315.

Azimi G., Papangelakis V.G. (2010) The solubility of gypsum and anhydrite in simulated laterite pressure acid leach solutions up to 250 ıC. Hydrometallurgy 102:1–13.

Becker A., Sötje I., Paulmann C., Beckmann F., Donath T., Boese R., Prymak O., Tiemann H., Epple M. (2005) Calcium sulphate hemihydrate is the inorganic mineral in statoliths of scyphozoan medusae (Cnidaria). Dalton Trans 8:1545–1550.

Bin Merdhan A.B. (2010) Inhibition of calcium sulfate strontium sulfate scale in water flood, SPE Production and Operations.

Block J., Waters O.B. (1968) The CaSO4-Na2SO4-NaCl-H2O system at 25°C to 100°C. J Chem Eng Data 13:336-344.

Blount C.W., Dickson F.W. (1973) Gypsum-anhydrite equilibria in systems CaSO4 – H2O and CaSO4 -NaCl-H2O. Am Mineral 58: 323–331C.

Blount C.W., Dickson F.W. (1969) The solubility of anhydrite (CaSO4) in NaCl–H2O from 100 to 450ıC and 1 to 1000 bars. Geochim Cosmochim Acta 33: 227–245.

Boßelmann F., Epple M., Sötje I, Tiemann H. (2007) Statoliths of calcium sulfate hemihydrate are used for gravity sensing in rhopaliophoran medusae (Cnidaria). In: Baeuerlein E (ed) Biomineralisation: biological aspects and structure formation. Wiley-VCH, Weinheim, pp 261–272.

Boyer-Guillon M. (1900) Etude sur la solubilite du sulfate de chaux. Extrait des Annales du conservatoire des Arts et Metiers / Study on the solubility of sulphate of lime. Extract from the Annals of the Conservatory of Arts and Crafts, 3rd series, volume II.

Bock E. (1961) On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25°C. Can J Chem 39:1746–1751.

Chang L., Howie R., Zussman J (1996) Rock-forming minerals, Vol. 5B: Non-silicates, longman scienti¢c and technical. Harlow, 383 pp.

Chernov A.A., Zaitseva N.P., Rashkovich L N. “Secondary nucleation induced by the cracking of a growing crystal: KH 2PO4 (KDP) and K(H,D) 2PO 4 (DKDP).” J. Cryst. Growth 102 (1990): 793-800.

Chernov A.A., Moder Crystallography III, Part I. Edited by Springer Verlag. Berlin Heidelberg, 1984.

Chianese A., Contaldi A., Mazzarotta B. “Primary Nucleation of Sodium Perborate in Aqueous Solutions.” J. Cryst. Growth 78 (1986): 279-90.

Christoffersen M.R., Christoffersen J., Weijnen M.P.C., Van Rosmalen G.M. “Crystal growth of calcium sulphate dihydrate at low supersaturation.” J. Cryst. Growth 58 (1982): 585-95.

Christensen A.N., Jensen T.R., Nonat A., 2010. A new calcium sulfate hemihydrate. Dalton Trans. 39, 2044–2048.

Cruft E.F., Chao P.C. (1970) Nucleation kinetics of the gypsum-anhydrite system. In: 3rd symposium on salt, Northern Ohio geological society proceedings, vol 1, pp 109–118.

Conley R.F., Bundy W.M. (1958) Mechanism of gypsification. Geochim Cosmochim Acta 15:57–72.

Daniela Freyer, Wolfgang Voigt (2003) Crystallization and Phase Stability of CaSO4 and CaSO4 – Based Salts. Institut fur Anorganische Chemie, TU Bergakademie Freiberg, D-09596 Freiberg, Germany.

De Jong W.F., Bouman J. “Zeitschrift Für Kristallographi.” 100 (1938).

Dickson F.W., Blount C.W., Tunell G. (1963) Use of hydrothermal solution equipment to determine the solubility of anhydrite in water from 100°C to 275°C and from 1 bar to 1000 bars pressure. Am J Sci 261:61–78.

Döring R., Becker W. “Kinetische behandlung der keimbildung in übersättigten dämpfen.” Wiley-VCH Verlag & Company. 416 (1935): 719-52.

Elfil H., Manzola A.S., Benamor M. (2003) “Decarbonation of geothermal waters by seeding with aragonite crystals coupled with air bubbling” Applied geochemistry 18 (8), 1137-1148.

Elfil H., Roques H. (2004) “Prediction of the limit of the metastable zone in the “CaCO3–CO2–H2O” system.” AIChE J. 50: 1908 -16.

Eroini V., Neville A., Kapur N., Euvrard M. “New insight into the relation between bulk precipitation and surface deposition of calcium carbonate mineral scale.” Desalin. Water Treat. 51 (2013): 882–91.

Fan C., Kan A.T., Fu G., Tomson M.B. (2010) Quantitative evaluation of calcium sulfate precipitation kinetics in the presence and absence of scale inhibitors. SPE J 15:977–988.

Farkas L. “Keimbildungsgeschwindigkeit in Übersättigten Dämpfen.” Z. Phys. Chem. (1927): 1927-12513.

Freyer D, Voigt W (2003) Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatsh Chem 134:693–719.

Follner S., Wolter A., Preusser A., Indris S., Silber C., Follner H., 2002. The Setting Behaviour of α‑ and β‑CaSO4 ·0,5H2O as a Function of Crystal Structure and Morphology. Cryst. Res. Technol., 37, 1075.

Gibbs J.W. The collected works of J. Willard Gibbs, Volume I: thermodynamics. Yale University Press. Yale, 1928.

Harrell J.A., (2017). Amarna gypsite: A new source of gypsum for ancient Egypt. J. Archaeol. Sci. Rep. 11, 536–545.

Hamid G., Khelifa H., Mohamed G. (2016) Effect of Calcium Sulphate on the Geotechnical Properties of Stabilized Clayey Soils. January 2016. Periodica Polytechnica Civil Engineering 61(2).

Hamdona S., Al Hadad, O. (2008). Influence of additives on the precipitation of gypsum in sodium chloride solutions. Desalination 228, 277-286.

Hasson D., Drak A., Semiat R. (2001) Inception of CaSO4 scaling on RO membranes at various water recovery levels.” Desalination 139: 73-81.

Hchaichi H., Elfil H., Guichardon P., Hannachi A. (2013) Scaling tendency assessment in reverse osmosis modules.” Desalination Water Treat. 51: 892-98.

He S., Oddo J.E., Tomson M.B. (1994) The nucleation kinetics of calcium sulfate dihydrate in NaCl solutions up to 6 m and 90°C. J Collloid Interface Sci 162:297-303.

Hill A.E. (1937) The transition temperature of gypsum to anhydrite. J Am Chem Soc 59:2242–

Innorta G., Rabbi E., Tomadin L. (1980) The gypsum-anhydrite equilibrium by solubility measurements. Geochim Cosmochim Acta 44:1931–1936.

Jawed J., J., Taylor H.F.W., (1978)0 Studies on hydration of cement— Recent developments, World Cem. Technol. September 183–193).

Kashchiev, D., (2000). Nucleation: Basic Theory with Applications. Butterworth, Heinemann, Oxford.

Kan, A.T, Fu G., Fan Ch., Tomson M.B, Shen D. (2010) Quantitative evaluation of calcium sulfate precipitation kinetics in the presence and absence of scale inhibitors. SPE 121563.

Kerstin Elert, Cristina Benavides-Reyes, Carolina Cardell, Effect of animal glue on mineralogy, strength and weathering resistance of calcium sulfate-based composite materials.

Kingery, W.D., Vandiver, P.B, Prickett, M., (1988). The Beginnings of Pyrotechnology, Part II: Production and Use of Lime and Gypsum Plaster in the Pre-Pottery Neolithic near East. Journal of Field Archaeology, 15, 219-244.

Klepetsanis P.G., koutsoukos P.G. “Precipitation of calcium sulfate dihydrate at constant calcium activity.” J. Cryst. Growth 98 (1989): 480-86.

Klepetsanis P.G., Dalas E., Koutsoukos P.G. “Role of temperature in the spontaneous precipitation of calcium sulfate dehydrate.” Langmuir. 15 (1999): 1534-40.

Klein J.P., Boistelle R. Cristallisation: Aspects théoriques sciences fondamentales des techniques de l’ingénieur, traité génie et procédés chimiques/Crystallization: Theoretical aspects fundamental sciences of engineering techniques, treaty engineering and chemical processes. J1500 (1989): 1-21.

Kontrec J., Kralj D., Breèeviæ L. (2002) Transformation of anhydrous calcium sulphate into calcium sulphate dihydrate in aqueous solutions. J Cryst Growth 240:203–211.

Kuthadi S.K. (2015) “Laboratory scale study of calcium sulfate hydration forms.” MS thesis Western Kentucky University,

Lancia A., Musmarra D., Prisciandaro M. (1999) Measuring induction period for calcium sulfate dihydrate precipitation. AIChE J 45:390–397.

Lee S., Lee C.H. “Effect of operating conditions on caso4 scale formation mechanism in nanofiltration for water softening.” Water Res. 34 (2000): 3854-66.

Le Dantec T., 2016. Gypsum external renderings of Paris: history and fabrication. Further Studies in the History of Construction: Proceedings of the Third Conference of the Construction History Society, 2016, 978-0-9928751-2-1.

Lindsay, W.L. 1979. Chemical equilibria in soils. John Wiley and Sons, NewYork. F.M. Lea, Chemistry of Cement and Concrete, 4th ed., Arnold, London, 1998.

Lucas A., Harris J., 2012. Ancient Egyptian Materials and Industries, Dover 759 Publications Inc., Mineola (New York), 760.

Laurent L. Nucléation et transition de phase en chimie pharmaceutique. Thèse de Doctorat [Nucleation and phase transition in pharmaceutical chemistry. Doctoral thesis], Université Paul Cézanne, France 2002.

Lucas A., Harris J., 2012. Ancient Egyptian Materials and Industries, Dover 759 Publications Inc., Mineola (New York), 760.

Mackay, J.E. (2003) Modeling in-situ scale deposition: The impact of reservoir and well geometries and kinetic reaction rates. SPE Produc. Facil. 18:45–56.

Madgin W.M., Swayles D.A. (1956) Solubilities in the system CaSO4-NaCl-H2O at 25° and 35°C. J Appl Chem 6:482–487.

Matin A., Rahman F., Shafi H.Z., Zubair, S.M. “Scaling of reverse osmosis membranes used in water desalination: phenomena, impact, and control; future directions.” Desalination 455 (2019): 135–57.

Massaro F.R., Rubbo M., Aquilano D., Theoretical equilibrium morphology of gypsum (CaSO4 · 2H2O). 2. The stepped faces of the [001] main zone, Crystal Growth Des. 11 (5) (2011) 1607– 1614.

Markov I.V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy. Edited by Word scientific. Bulgaria, 1995.

Marignac C. (1874) Ueber die Löslichkeit des schwefelsauren kalkes in wasser [On the solubility of sulphate of lime in water]. Z Anal Cam 13: 57–59.

Marshall W.L., Slusher R. (1966) Thermodynamics of Calcium Sulfate Dihydrate in Aqueous sodium chloride solutions, 0– 110°C. J Phys Chem 70: 4015- 4027.

Marignac C. (1874) Ueber die Löslichkeit des schwefelsauren kalkes in wasser. Z Anal Cam 13: 57–59.

Melliti E., Touati K., Van der Bruggen B., Elfil H. (2021) Effect of Fe2+ ions on gypsum precipitation during bulk crystallization of reverse osmosis concentrates. Chemosphere 32814139.

Melliti E., Van der Bruggen B., Elfil H. (2022) “Combined iron oxides and gypsum fouling of reverse osmosis membranes during desalination process” Journal of Membrane Science 653, 120472.

Momma K., Izumi F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276.

Monnin C. (1990) The influence of pressure on the activity-coefficients of the solutes and on the solubility of minerals in the system Na-Ca- Cl-SO4-H2O to 200ıC and 1 kbar, and to high NaCl concentration. Geochim Cosmochim Acta 54:3265–3282.

Mullin J.W. Crystallization. Edited by Butterworth-Heinemann. Oxford: Boston, 2001. Reclamation of Saline Soils Using Calcium Sulfate Residues from the Titanium Industry. Author(s): Mourhaf Kayasseh and Charles Schenck Source: Ambio, Vol. 18, No. 2 (1989), pp. 124-127Published.

Noyes A.A., Whiteney W.R. “The rate of solution of solid substances in their own solution.” J. Am. Chem. Soc 19 (1897): 930-34.

Onorato E. “The fine structure of gypsum Ca2SO4·2H2O”. Zeitshift fur kristllographie kristalgeometrie kristalphysik, kristallemchemie 1929 (1929): 277-325.

Ossorio M., Van Driessche A.E.S., Pérez P., García-Ruiz J.M. (2014) The gypsum-anhydrite paradox revisited. Chem Geol 386:16–21.

Ochando-Pulido J.M., Victor-Ortega M.D., Martínez-Ferez A. “On the cleaning procedure of a hydrophilic reverse osmosis membrane fouled by secondary-treated olive mill waste water.” Chem. Eng. J. 260 (2015): 142-51.

Partridge E., White A.H. (1929) The solubility of calcium sulfate from 0 to 200ıC. J Am Chem Soc 51:360–370.

Posnjak E (1938) The system CaSO4–H2O. Am J Sci 35:247–272 Developments on Calcium Sulfate Scaling Prediction and Control in Oil and Gas ProductionSamridhdi Paudyal, Sana Mateen, Chong Dai, Saebom Ko, Xin

Power W.H., Fabuss B.M., Satterfield C.N. (1966) Transient solute concentrations and phase changes of calcium sulfate in aqueous sodium chloride. J Chem Eng Data 11:149–154.

Prisciandaro M., Lancia A., Musmarra D. (2001a) Calcium sulphate dihydrate nucleation in the presence of calcium and sodium chloride salts. Ind Eng Chem Res 40:2335–2339.

Prisciandaro M., Lancia A., Musmarra D. (2001b) Gypsum nucleation into sodium chloride solutions. AIChE J 47:929–934.

Prisciandaro M., Lancia A., Musmarra D. (2003) The retarding effect of citric acid on calcium sulfate nucleation kinetics. Ind Eng Chem Res 42:6647–6652.

Pritzel C., Kowald T., Sakalli Y., Trettin R, (2018) Binding m.aterials based on calcium sulphates, North Carolina State University (NCSU) Libraries.

Raupenstrauch G.A. (1885) Uber die Bestimmungder loslichkeit einiger salze in wasser bei verschiedenen temperaturen. Monatsh Chem 6:563–591.

Ryan W.B.F. (2009) Decoding the Mediterranean salinity crisis. Sedimentology 56:95–136.

Rashad M.M., Mahmoud M.H.H., Ibrahim I.A., Abdel-Aal E.A. (2004) Crystallization of calcium sulfate dihydrate under simulated conditions of phosphoric acid production in the presence of aluminum and magnesium ions. J Cryst Growth 267:372–379.

Sangwal K. “On the mechanism of crystal growth from solutions.” J. Cryst. Growth 192 (1998): 200–14.

Schierholtz O.J. (1958) The crystallization of calcium sulphate dihydrate. Can J Chem 36:1057–1063.

Schubert H., Mersmann A. “Determination of heterogeneous nucleation rates.” Trans IChem E 74 A (1996): 821-27.

Sheikholeslami R. “Calcium sulfate fouling-precipitation of particulate: a proposed composite model.” Heat Transfer Eng 21 (2000): 24.

Singh, N.B., Middendorf, B., 2008. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Prog. Cryst. Growth & Charact. 53, 57-77.

Stark, J., Wicht, B., 1999. The history of gypsum and gypsum plaster. Zement-Kalk-Gips International, 52, 527-533.

Smith B.R., Sweett F (1971) The crystallization of calcium sulfate dihydrate. J Colloid Interface Sci 37:612–618.

Shenvi S.S., Isloor A.M., Ismail A.F. “A Review on RO membrane technology: developments and challenges.” Desalination 358 (2015): 10-26.

Shainberg, I., M.E. Sumner, W.P. Miller, M.P.W. Farina, M.A. Pavan, and M.V. Fey. 1989. Use of gypsum on soils: A review, pp. 1-111. IN: B.A. Stewart (ed.), Advances in Soil Science, Vol. 9, Springer-Verlag New York.

Sumner, M.E. and W.P. Miller. 1992. Soil crusting in relation to global soil degredation. J. Altern. Agric. 7:56-62.

Tiemann H., Sötje I., Jarms G., Paulmann C., Epple M., Hasse B. (2002) Calcium sulphate hemihydrate in statoliths of deep-sea medusae. J Chem Soc Dalton Trans 7:1266–1268.

Tilden W.A., Shenstone W.A. (1984) On the solubility of salts in water at high temperatures. Philos Trans R Soc 175A:31.

Touati K., Alia E., Zendah H., Elfil H., Hannachi, A. (2018) “Sand filters scaling by calcium carbonate precipitation during groundwater reverse osmosis” Desalination 430, 24-32.

Touati K., Hila M., Malkhouf K., Elfil H. “Study of fouling in two-stage reverse osmosis desalination unit operating without an inlet pH adjustment: diagnosis and implications.” Water Supply 17 (2017): 1682.

Tong T., Elimelech M. “The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions.” Environ. Sci. Technol 50 (2016): 6846-55.

Traynor, J. 1980. Ideas in soil and plant nutrition. Kovak Books, Bakersfield, CA.

Van’t Hoff J.H., Armstrong E.F., Hinrichsen W., Weigert F., Just G. (1903) Gips und anhydrit. Z Phys Chem 45:257.

Volmer M., Weber Α. “Keimbildung in Übersättigten Gebilden.” [“Nucleation in Supersaturated Structures.”] International journal of research in physical chemistry and chemical physics (1926): 1926-11927.

Warren J.K. (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin.

Wooster W.A. “On the crystal structure of gypsum, CaSO4·2H2O” Zeitschrift für Kristallographie – Crystalline Materials 94 (1936): 375-96.

Wang, Guannan Deng, Alex Lu, Yue Zhao, OuyangBingjie, Amy T. Kan, and Mason B. Tomson, Brine Chemistry Consortium, Rice University.

Warren J.K. (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin.

Weiss, H., Bräu M.F., 2009. How Much Water Does Calcined Gypsum Contain? Angew. Chem. Int. Ed. 48, 3520 –3524.

Wallace, A., and S.D. Nelson. 1986. Special issue on water-soluble polymer soil conditioners. Soil Sci. 141:311-397.

Zhang H., Banfield J.F. (2012) Energy calculations predict nanoparticle attachment orientations and asymmetric crystal formation. J Phys Chem Lett 3:2882–2886.

Zen E. (1965) Solubility measurements in the system CaSO4– NaCl–H2O at 35ı 50ı and 70ıC and one atmosphere pressure. J Petrol 6:124–164.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!