Chapter 2. The Importance of the Chemiluminescent System of the Marine Chromophore, Coelenterazine


José Pedro Silva, Joaquim C. G. Esteves da Silva and Luís Pinto da Silva
Centro de Investigação em Química (CIQUP), Instituto de Ciências Moleculares (IMS), Faculdade de Ciências, Universidade do Porto, Porto, Portugal

Part of the book: Advances in Chemistry Research. Volume 77


Chemiluminescence is the remarkable phenomenon that consists in the conversion of thermal energy into excitation energy due to a chemical reaction, which leads to emission of light. As no light-excitation source is required, only a low or negligible nonspecific signal is generated, which results in a high signal-to-noise ratio. So, several practical applications have been developed in the fields of biomedicine and bioanalysis. Coelenterazine is a chemiluminescent substrate widespread in the oceans, where reside about 80% of all luminescent organisms. Coelenterazine possess an imidazopyrazinone core that can be oxygenated into a high-energy peroxide intermediate, which quick decomposition generates a chemiexcited light-emitter. Interestingly, the imidazopyrazinone core can be found in eight phyla of bioluminescent organisms, demonstrating the importance of Coelenterazine and derivatives. More relevantly, the chemiluminescent system of Coelenterazine and related imidazopyrazinones have shown potential in biosensing, diagnostics and even as therapeutic agent. In this chapter, it will be provided insight into the most relevant steps of the chemiluminescent reaction of Coelenterazine and derivatives, as well as reporting developments regarding practical applications for this chromophoric system.

Keywords: coelenterazine, chemiluminescence, bioluminescence, chromophore, imidazopyrazinone, sensing, anticancer therapy


[1] Yan, Y., P. Shi, W. Song, and S. Bi, “Chemiluminescence and Bioluminescence
Imaging for Biosensing and Therapy: In Vitro and In Vivo Perspectives,” (in eng),
Theranostics, vol. 9, no. 14, pp. 4047-4065, 2019.
[2] Pinto da Silva, L., Núnez-Montenegro, A., Magalhães, C. M., Ferreira, P. J. O.,
Duarte, D., González-Berdullas, P., Rodríguez-Borges, J. E., Vale, N., & Esteves da
Silva, J. C. G. “Single-molecule chemiluminescent photosensitizer for a self activating and tumor-selective

photodynamic therapy of cancer,” European Journal
of Medicinal Chemistry, vol. 183, p. 111683, 2019/12/01/2019.
[3] Magalhães, C. M., J. C. Esteves da Silva, and L. Pinto da Silva,
“Chemiluminescence and Bioluminescence as an Excitation Source in the
Photodynamic Therapy of Cancer: A Critical Review,” (in eng), Chemphyschem,
vol. 17, no. 15, pp. 2286-94, Aug 4 2016.
[4] Magalhães, C., J. Silva, and L. Pinto da Silva, “Study of Coelenterazine
Luminescence: Electrostatic Interactions as the Controlling Factor for Efficient
Chemiexcitation,” Journal of Luminescence, vol. 199, 03/23 2018.
[5] Matsumoto, M., “Advanced chemistry of dioxetane-based chemiluminescent
substrates originating from bioluminescence,” Journal of Photochemistry and
Photobiology C: Photochemistry Reviews, vol. 5, no. 1, pp. 27-53, 2004/05/20/

[6] Delafresnaye, L., F. R. Bloesser, K. B. Kockler, C. W. Schmitt, I. M. Irshadeen, and
C. Barner-Kowollik, “All Eyes on Visible-Light Peroxyoxalate Chemiluminescence
Read-Out Systems,” (in eng), Chemistry, vol. 26, no. 1, pp. 114-127, Jan 2 2020.
[7] Pinto da Silva, L., and J. C. G. Esteves da Silva, “Mechanistic study of the
unimolecular decomposition of 1,2-dioxetanedione,” Journal of Physical Organic
Chemistry, vol. 26, no. 8, pp. 659-663, 2013/08/01
[8] Navizet, I., Y.-J. Liu, N. Ferré, D. Roca-Sanjuán, and R. Lindh, “The Chemistry of
Bioluminescence: An Analysis of Chemical Functionalities,” Chem Phys Chem, vol. 12, no. 17, pp. 3064-3076, 2011/12/09
[9] Pinto da Silva, L., and J. C. G. Esteves da Silva, “Interstate Crossing-Induced
Chemiexcitation as the Reason for the Chemiluminescence of Dioxetanones,” Chem
Phys Chem, vol. 14, no. 5, pp. 1071-1079,
2013/04/02 2013.
[10] Yue, L., Y.-J. Liu, and W.-H. Fang, “Mechanistic Insight into the Chemiluminescent
Decomposition of Firefly Dioxetanone,” Journal of the American Chemical Society,
vol. 134, no. 28, pp. 11632-11639, 2012/07/18 2012.
[11] Pinto da Silva, L., and J. C. G. Esteves da Silva, “Firefly Chemiluminescence and
Bioluminescence: Efficient Generation of Excited States,” Chem Phys Chem, vol. 13, no. 9, pp. 2257-2262, 2012/06/18
[12] Magalhães, C. M., J. C. G. Esteves da Silva, and L. Pinto da Silva, “Study of
coelenterazine luminescence: Electrostatic interactions as the controlling factor for
efficient chemiexcitation,” Journal of Luminescence, vol. 199, pp. 339-347,
2018/07/01/ 2018.
[13] Pinto da Silva, L., R. F. J. Pereira, C. M. Magalhães, and J. C. G. Esteves da Silva,
“Mechanistic Insight into Cypridina Bioluminescence with a Combined
Experimental and Theoretical Chemiluminescent Approach,” The Journal of
Physical Chemistry B, vol. 121, no. 33, pp. 7862-7871, 2017/08/24 2017.
[14] Yu, M., and Y. Liu, “A QM/MM Study on the Initiation Reaction of Firefly
Bioluminescence-Enzymatic Oxidation of Luciferin,” (in eng), Molecules, vol. 26,
no. 14, Jul 12 2021.
[15] Pinto da Silva, L., C. M. Magalhães, D. M. A. Crista, and J. C. G. Esteves da Silva,
“Theoretical modulation of singlet/triplet chemiexcitation of chemiluminescent
imidazopyrazinone dioxetanone via C8-substitution,” Photochemical &
Photobiological Sciences, 10.1039/C7PP00012J vol. 16, no. 6, pp. 897-907, 2017.
[16] Eremeeva, E. V., T. Jiang, N. P. Malikova, M. Li, and E. S. Vysotski,
“Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by
Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents,”
International Journal of Molecular Sciences, vol. 21, no. 15, p. 5446, 2020.
[17] Teranishi, K., “Luminescence of imidazo[1,2-a]pyrazin-3(7H)-one compounds,” (in
eng), Bioorg Chem, vol. 35, no. 1, pp. 82-111, Feb 2007.
[18] Rose, A. L. and T. D. Waite, “Chemiluminescence of luminol in the presence of
iron(II) and oxygen: oxidation mechanism and implications for its analytical use,”
(in eng), Anal Chem, vol. 73, no. 24, pp. 5909-20, Dec 15 2001.
[19] Lee, J., Bioluminescence, the nature of the light. 2020.
[20] Garcia-Iriepa, C., and I. Navizet, “Effect of Protein Conformation and AMP
Protonation State on Fireflies’ Bioluminescent Emission,” (in eng), Molecules, vol.
24, no. 8, Apr 20 2019.
[21] Inoue, S., S. Sugiura, H. Kakoi, K. Hasizume, T. Goto, and H. Iio, “Squid
Bioluminescence II. Isolation from Watasenia Scintillans and Synthesis of 2-(P-
One,” Chemistry Letters, vol. 4, no. 2, pp. 141-144, 1975/02/05 1975.
[22] Shimomura, O., and F. H. Johnson, “Chemical nature of bioluminescence systems
in coelenterates,” (in eng), Proc Natl Acad Sci USA, vol. 72, no. 4, pp. 1546-9, Apr
[23] Inoue, S., H. Taguchi, M. Murata, H. Kakoi, and T. Goto, “Squid Bioluminescence
IV. Isolation and Structural Elucidation of Watasenia Dehydropreluciferin,”
Chemistry Letters, vol. 6, no. 3, pp. 259-262, 1977/03/05 1977.
[24] Jiang, T., Y. Xingye, Y. Zhou, I. Yampolsky, L. Du, and M. Li, “New
bioluminescent coelenterazine derivatives with various C-6 substitutions,” Org.
Biomol. Chem., vol. 15, 07/31 2017.
[25] Teranishi, K., and O. Shimomura, “Coelenterazine analogs as chemiluminescent
probe for superoxide anion,” (in eng), Anal Biochem, vol. 249, no. 1, pp. 37-43, Jun
15 1997.
[26] Magalhães, C. M., González-Berdullas, P., Duarte, D., Correia, A. S., Rodríguez Borges, J. E., Vale, N., Esteves da Silva, J. C. G., & Pinto da Silva, L. “Target Oriented Synthesis of Marine Coelenterazine Derivatives with Anticancer Activity
by Applying the Heavy-Atom Effect,” Biomedicines, vol. 9, no. 9, 2021.
[27] Jiang, T., L. Du, and M. Li, “Lighting up bioluminescence with coelenterazine:
strategies and applications,” (in eng), Photochem Photobiol Sci, vol. 15, no. 4, pp.
466-80, Apr 2016.
[28] Markova, S. V., and E. S. Vysotski, “Coelenterazine-dependent luciferases,” (in
eng), Biochemistry (Mosc), vol. 80, no. 6, pp. 714-32, Jun 2015.
[29] Vysotski, E. S., and J. Lee, “Ca2+-Regulated Photoproteins:  Structural Insight into
the Bioluminescence Mechanism,” Accounts of Chemical Research, vol. 37, no. 6,
pp. 405-415, 2004/06/01 2004.
[30] Nakano, M., K. Sugioka, Y. Ushijima, and T. Goto, “Chemiluminescence probe with
Cypridina luciferin analog, 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin 3-one, for estimating the ability of human granulocytes to generate O2,” (in eng),
Anal Biochem, vol. 159, no. 2, pp. 363-9, Dec 1986.
[31] Suzuki, N., Suetsuna, K., Mashiko, S., Yoda, B., Nomoto, T., Toya, Y., Inaba, H.,
& Goto, T. “Reaction Rates for the Chemiluminescence of Cypridina Luciferin
Analogues with Superoxide: A Quenching Experiment with Superoxide
Dismutase,” Agricultural and Biological Chemistry, vol. 55, no. 1, pp. 157-160,
[32] Qi, C. F., Y. Gomi, T. Hirano, M. Ohashi, Y. Ohmiya, and F. I. Tsuji, “Chemi- and
bio-luminescence of coelenterazine analogues with phenyl homologues at the C-2
position,” Journal of the Chemical Society, Perkin Transactions 1, 10.1039/
P19920001607 no. 13, pp. 1607-1611, 1992.
[33] Chen, F.-Q., T. Hirano, Y. Hashizume, Y. Ohmiya, and M. Ohashi, “Synthesis and
preliminary chemie- and bio-iuminescence studies of a novel photolabile
coelenterazine analogue with a trifluoromethyl diazirine group,” Journal of the
Chemical Society, Chemical Communications, 10.1039/C39940002405 no. 20, pp.
2405-2406, 1994.
[34] Zheng, J. L., Chen, F. Q., Hirano, T., Ohmiya, Y., Maki, S., Niwa, H., & Ohashi, M.
“Synthesis, Chemi- and Bioluminescence Properties, and Photolysis of a
Coelenterazine Analogue Having a Photoreactive Azido Group,” Bulletin of the
Chemical Society of Japan, vol. 73, no. 2, pp. 465-469, 2000/02/01 2000.
[35] Adamczyk, M., S. Akireddy, D. Johnson, P. Mattingly, Y. Pan, and R. Reddy,
“Synthesis of 3,7-Dihydroimidazo[1,2a]pyrazine-3-ones and Their
Chemiluminescent Properties,” Cheminform, vol. 35, 02/03 2004.
[36] Teranishi, K., and T. Goto, “Synthesis and Chemiluminescence of Coelenterazine
(Oplophorus Luciferin) Analogues,” Bulletin of the Chemical Society of Japan, vol.
63, no. 11, pp. 3132-3140, 1990/11/01 1990.
[37] Hirano, T., Y. Ohmiya, S. Maki, H. Niwa, and M. Ohashi, “Bioluminescent
properties of fluorinated semi-synthetic aequorins,” Tetrahedron Letters, vol. 39,
no. 31, pp. 5541-5544, 1998/07/30/ 1998.
[38] Saito, R., T. Hirano, H. Niwa, and M. Ohashi, “Substituent Effects on the
Chemiluminescent Properties of Coelenterazine Analogues,” Chemistry Letters, vol.
27, no. 1, pp. 95-96, 1998/01/01 1998.
[39] Giuliani, G., Molinari, P., Ferretti, G., Cappelli, A., Anzini, M., Vomero, S., &
Costa, T. “New red-shifted coelenterazine analogues with an extended electronic
conjugation,” Tetrahedron Letters, vol. 53, pp. 5114–5118, 09/19 2012.
[40] Yeh, H. W., and H. W. Ai, “Development and Applications of Bioluminescent and
Chemiluminescent Reporters and Biosensors,” (in eng), Annu Rev Anal Chem (Palo
Alto Calif), vol. 12, no. 1, pp. 129-150, Jun 12 2019.
[41] World Health Organization. (2020, 21 June). Cancer. Available:
[42] Wang, J. J., K. F. Lei, and F. Han, “Tumor microenvironment: recent advances in
various cancer treatments,” (in eng), Eur Rev Med Pharmacol Sci, vol. 22, no. 12,
pp. 3855-3864, Jun 2018.
[43] Wolf, R. E., “Sarcoma and metastatic carcinoma,” (in eng), J Surg Oncol, vol. 73,
no. 1, pp. 39-46, Jan 2000.
[44] Fan, W., P. Huang, and X. Chen, “Overcoming the Achilles’ heel of photodynamic
therapy,” Chemical Society Reviews, 10.1039/C6CS00616G vol. 45, no. 23, pp.
6488-6519, 2016.
[45] Nurkhalida Kamal, Muna Abdulsalam Ilowefah, Ayah Rebhi Hilles, Nurul Adlina
Anua, Tahani Awin, Hussah Abdullah Alshwyeh, Sahar Khamees Aldosary, Najla
Gooda Sahib Jambocus, Areej A Alosaimi, Azizur Rahman, Syed Mahmood,
Ahmed Mediani. “Genesis and Mechanism of Some Cancer Types and an Overview
on the Role of Diet and Nutrition in Cancer Prevention,” (in eng), Molecules, vol.
27, no. 6, Mar 9 2022.
[46] Irigaray, P., Newby, J. A., Clapp, R., Hardell, L., Howard, V., Montagnier, L.,
Epstein, S., & Belpomme, D. “Lifestyle-related factors and environmental agents
causing cancer: an overview,” (in eng), Biomed Pharmacother, vol. 61, no. 10, pp.
640-58, Dec 2007.
[47] National Cancer Institute. (2021, 21 June). What is Cancer? Available:
[48] Hayes, J. D., A. T. Dinkova-Kostova, and K. D. Tew, “Oxidative Stress in Cancer,”
(in eng), Cancer Cell, vol. 38, no. 2, pp. 167-197, Aug 10 2020.
[49] Kroemer, G., and J. Pouyssegur, “Tumor cell metabolism: cancer’s Achilles’ heel,”
(in eng), Cancer Cell, vol. 13, no. 6, pp. 472-82, Jun 2008.
[50] N. C. Institute, “Types of Cancer Treatment,” 2019.
[51] Zhang, Q., and L. Li, “Photodynamic combinational therapy in cancer treatment,”
(in eng), J buon, vol. 23, no. 3, pp. 561-567, May-Jun 2018.
[52] Pinto da Silva, L., Magalhães, C. M., Núñez-Montenegro, A., Ferreira, P. J. O.,
Duarte, D., Rodríguez-Borges, J. E., Vale, N., & Esteves da Silva, J. C. G. “Study
of the Combination of Self-Activating Photodynamic Therapy and Chemotherapy
for Cancer Treatment,” (in eng), Biomolecules, vol. 9, no. 8, Aug 20 2019.
[53] Vineis, P., “Individual susceptibility to carcinogens,” (in eng), Oncogene, vol. 23,
no. 38, pp. 6477-83, Aug 23 2004.
[54] Dobson, J., G. F. de Queiroz, and J. P. Golding, “Photodynamic therapy and
diagnosis: Principles and comparative aspects,” (in eng), Vet J, vol. 233, pp. 8-18,
Mar 2018.
[55] Zhang, Y., Y. Hao, S. Chen, and M. Xu, “Photodynamic Therapy of Cancers With
Internal Light Sources: Chemiluminescence, Bioluminescence, and Cerenkov
Radiation,” (in English), Mini Review vol. 8, 2020-September-04 2020.
[56] Champeau, M., S. Vignoud, L. Mortier, and S. Mordon, “Photodynamic therapy for
skin cancer: How to enhance drug penetration?,” (in eng), J Photochem Photobiol
B, vol. 197, p. 111544, Aug 2019.
[57] Dougherty, T. J., J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle, and A.
Mittleman, “Photoradiation therapy for the treatment of malignant tumors,” (in eng),
Cancer Res, vol. 38, no. 8, pp. 2628-35, Aug 1978.
[58] Policard, A., “Etude sur les aspects offerts par des tumeurs experimentales
examinees a la limiere de wood,” Biologue Comptes Rendus, vol. 91, p. 1423, 1924
[59] Li, X.-Y., Tan, L.-C., Dong, L.-W., Zhang, W.-Q., Shen, X.-X., Lu, X., Zheng, H.,
& Lu, Y.-G. “Susceptibility and Resistance Mechanisms During Photodynamic
Therapy of Melanoma,” (in eng), Frontiers in oncology, vol. 10, pp. 597-597, 2020.
[60] Rkein, A. M., and D. M. Ozog, “Photodynamic therapy,” (in eng), Dermatol Clin,
vol. 32, no. 3, pp. 415-25, x, Jul 2014.
[61] Cui, S., Yin, D., Chen, Y., Di, Y., Chen, H., Ma, Y., Achilefu, S., & Gu, Y. “In Vivo
Targeted Deep-Tissue Photodynamic Therapy Based on Near-Infrared Light
Triggered Upconversion Nanoconstruct,” ACS Nano, vol. 7, no. 1, pp. 676-688,
2013/01/22 2013.
[62] Bolze, F., S. Jenni, A. Sour, and V. Heitz, “Molecular photosensitisers for two photon photodynamic therapy,” Chemical Communications, 10.1039/C7CC
06133A vol. 53, no. 96, pp. 12857-12877, 2017.
[63] Chen, H., Wang, G. D., Chuang, Y.-J., Zhen, Z., Chen, X., Biddinger, P., Hao, Z.,
Liu, F., Shen, B., Pan, Z., & Xie, J. “Nanoscintillator-mediated X-ray inducible
photodynamic therapy for in vivo cancer treatment,” (in eng), Nano Lett, vol. 15, no.
4, pp. 2249-56, Apr 8 2015.
[64] Saito-Moriya, R., Nakayama, J., Kamiya, G., Kitada, N., Obata, R., Maki, S. A., &
Aoyama, H. “How to Select Firefly Luciferin Analogues for In Vivo Imaging,” (in
eng), Int J Mol Sci, vol. 22, no. 4, Feb 12 2021.
[65] Hsu, C. Y., C. W. Chen, H. P. Yu, Y. F. Lin, and P. S. Lai, “Bioluminescence
resonance energy transfer using luciferase-immobilized quantum dots for self illuminated photodynamic therapy,” (in eng), Biomaterials, vol. 34, no. 4, pp. 1204-
12, Jan 2013.
[66] So, M. K., C. Xu, A. M. Loening, S. S. Gambhir, and J. Rao, “Self-illuminating
quantum dot conjugates for in vivo imaging,” (in eng), Nat Biotechnol, vol. 24, no.
3, pp. 339-43, Mar 2006.
[67] Kervinen, M., J. Pätsi, M. Finel, and I. E. Hassinen, “Lucigenin and coelenterazine
as superoxide probes in mitochondrial and bacterial membranes,” (in eng), Anal
Biochem, vol. 324, no. 1, pp. 45-51, Jan 1 2004.
[68] Zou, J., Yin, Z., Ding, K., Tang, Q., Li, J., Si, W., Shao, J., Zhang, Q., Huang, W.,
& Dong, X. “BODIPY Derivatives for Photodynamic Therapy: Influence of
Configuration versus Heavy Atom Effect,” ACS Applied Materials & Interfaces,
vol. 9, no. 38, pp. 32475-32481, 2017/09/27 2017.
[69] Pan, J.-S., M.-Z. Hong, and J.-L. Ren, “Reactive oxygen species: a double-edged
sword in oncogenesis,” (in eng), World journal of gastroenterology, vol. 15, no. 14,
pp. 1702-1707, 2009.
[70] Buetler, T. M., A. Krauskopf, and U. T. Ruegg, “Role of Superoxide as a Signaling
Molecule,” Physiology, vol. 19, no. 3, pp. 120-123, 2004/06/01 2004.
[71] Afanas’ev, I., “Mechanisms of superoxide signaling in epigenetic processes: relation
to aging and cancer,” (in eng), Aging Dis, vol. 6, no. 3, pp. 216-27, Jun 2015.
[72] Roos, D., “Chronic Granulomatous Disease,” (in eng), Methods Mol Biol, vol. 1982,
pp. 531-542, 2019.
[73] Hayyan, M., M. A. Hashim, and I. M. AlNashef, “Superoxide Ion: Generation and
Chemical Implications,” Chemical Reviews, vol. 116, no. 5, pp. 3029-3085,
2016/03/09 2016.
[74] Yang, J., Y. Cao, and N. Zhang, “Spectrophotometric method for superoxide anion
radical detection in a visible light (400–780 nm) system,” Spectrochimica Acta Part
A: Molecular and Biomolecular Spectroscopy, vol. 239, p. 118556, 2020/10/05/
[75] Liu, R. H., S. Fu, and H. Y. Zhan, “Spectrophotometric determination of superoxide
anion radical with nitro blue tetrazolium,” Journal of Instrumental Analysis, vol. 27,
pp. 355-359, 01/01 2008.
[76] Uehara, K., N. Maruyama, C.-K. Huang, and M. Nakano, “The first application of a
chemiluminescence probe, 2-methyl-6-[P-methoxyphenyl]-3,7-dihydro imidazo[1,2-α]pyrazin-3-one (MCLA), for detecting O2− production, in vitro, from
Kupffer cells stimulated by phorbol myristate acetate,” FEBS Letters, vol. 335, no.
2, pp. 167-170, 1993/12/06/ 1993.
[77] Shimomura, O., C. Wu, A. Murai, and H. Nakamura, “Evaluation of five
imidazopyrazinone-type chemiluminescent superoxide probes and their application
to the measurement of superoxide anion generated by Listeria monocytogenes,” (in
eng), Anal Biochem, vol. 258, no. 2, pp. 230-5, May 1 1998.
[78] Devillers, I., de Wergifosse, B., Bruneau, M.-P., Tinant, B., Declercq, J.-P.,
Touillaux, R., Rees, J.-F., & Marchand-Brynaert, J. “Synthesis, structural
characterization and antioxidative properties of aminopyrazine and
imidazolopyrazine derivatives,” Journal of the Chemical Society, Perkin
Transactions 2, 10.1039/A900289H no. 7, pp. 1481-1488, 1999.
[79] Arfin, S., Jha, N. K., Jha, S. K., Kesari, K. K., Ruokolainen, J., Roychoudhury, S.,
Rathi, B., & Kumar, D. “Oxidative Stress in Cancer Cell Metabolism,” (in eng),
Antioxidants (Basel), vol. 10, no. 5, Apr 22 2021.
[80] Krasitskaya, V. V., E. E. Bashmakova, and L. A. Frank, “Coelenterazine-Dependent
Luciferases as a Powerful Analytical Tool for Research and Biomedical
Applications,” (in eng), Int J Mol Sci, vol. 21, no. 20, Oct 10 2020.
[81] Gagnot, G., Hervin, V., Coutant, E. P., Goyard, S., Jacob, Y., Rose, T., Hibti, F. E.,
Quatela, A., & Janin, Y. L. “Core-Modified Coelenterazine Luciferin Analogues:
Synthesis and Chemiluminescence Properties,” Chemistry – A European Journal, vol. 27, no. 6, pp. 2112-2123, 2021/01/26
[82] Silva, J. P., P. González-Berdullas, J. C. G. Esteves da Silva, and L. Pinto da Silva,
“Development of a Coelenterazine Derivative with Enhanced Superoxide Anion Triggered Chemiluminescence in Aqueous Solution,” Chemosensors, vol. 10, no. 5,
[83] Lourenço, J. M., J. C. G. Esteves da Silva, and L. Pinto da Silva, “Combined
experimental and theoretical study of Coelenterazine chemiluminescence in aqueous
solution,” Journal of Luminescence, vol. 194, pp. 139-145, 2018/02/01/ 2018.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!