Chapter 2. Population Dynamics and Community Structure in Freshwater Ecosystems

$39.50

Didem Gökçe, PhD
Limnology Research Laboratory, Department of Biology, İnönü University, Malatya, Turkey

Chapter DOI: 10.52305/UPXB6301
Part of the Book: Advances in Environmental Research. Volume 92

Abstract

Population ecology is a crucial concept that reflects relationships between organisms and the quantity and quality of habitat. Different species as well as their populations living in different habitats have various physiological requirements. Therefore, they exhibit different reactions when physical and chemical environmental conditions change. Environmental resistance influences species and populations in natural ecosystems in two important factors: density-dependent factors (abundance, competition, predation, fecundity-natality, mortality) and density-independent factors (anthropogenic pollution, climatic factors). Aquatic ecosystems are important because they are habitats for organisms and provide physiological regulation. Water quality is a major factor regulating population size. Accordingly, variations occur in temporal and spatial population dynamics. The quality and quantity of the populations forming the community are also crucial factors that indicate the quality of the environment. Qualitative and quantitative population dynamics in the community are a significant factor that reflects the environmental quality. For this reason, they are also considered as aquatic indicators. Environmental resistance to limiting factors influences reproduction rate, lifespan, and mortality rate; thus, population growth is affected. Population dispersal occurs along with the effect of environmental resistance based on heterogeneous areas (microhabitats) in the ecosystem. When resources are unlimited, the population can grow exponentially and its size increases at a greater rate. However, logistic growth is common on protozoa, plankton, and fish in the freshwater ecosystem rather than exponential growth. The population dynamics and life history strategies of freshwater organisms, as well as interactions between these structures and water quality are discussed in this chapter.

Keywords: aquatic ecology, seasonal variations, population dynamics, reproduction, life table


References


Ajima, M. N. O. and Pandey, P. K. (2021). “Effects of Pharmaceutical Waste in Aquatic Life.” In Advances in Fisheries Biotechnology, edited by Pramod K. Pandey and Janmejay Parhi, 441–452. Springer, Singapore. https://doi.org/10.1007/978-981-16-3215-0_25.

Akçakaya, H. R., Hochkirch, A, Bried J. T., van Grunsven R. H. A., Simaika J. P., Knijf G. de and Henriques, S. (2021). Calculating population reductions of invertebrate species for IUCN Red List assessments. Journal of Insect Conservation, 25:377–82. https://doi.org/10.1007/s10841-021-00303-0.

Allan, J. D., Castillo, M. M. and Capps, K. A. (2021). “Energy Flow and Nutrient Cycling in Aquatic Communities.” In Stream Ecology, edited by J. David Allan, Maria M. Castillo and Krista A. Capps, 357–381. Springer International Publishing. https://doi.org/10.1007/978-3-030-61286-3_12.

Allen, D. C., and Vaughn, C. C. (2011). Density-dependent biodiversity effects on physical habitat modification by freshwater bivalves. Ecology, 92:1013–1019. https://doi.org/10.1890/10-0219.1.

Arunagiri, A., Perumalsamy, M., Sivasankar, T., Sivashanmugam, P. and Srinath, S. (2020). Advances and challenges for sustainable ecosystems. Environmental Science and Pollution Research, 27(17), 20573–20575. https://doi.org/10.1007/s11356-020-08318-x.

Ayaz, S., Atasoy Aytış, E., Gürsoy Haksevenler, H., Koyunluoğlu Aynur, Ş., Dilaver, M., Erdoğan, N., Aydöner, C. and Karaaslan, Y. (2021). An approach for determining the nutrient sensitive areas: a case study for Gediz River Basin, Turkey. Environmental Monitoring and Assessment, 193:266. https://doi.org/10.1007/
s10661-021-09017-x.

Barinova, S. and Mamanazarova, K. (2021). Diatom algae-indicators of water quality in the Lower Zarafshan River, Uzbekistan. Water, 13:358. https://doi.org/10.3390/
w13030358.

Becking, L. G. M. B. And Canfield, D. E. (2015). Baas Becking’s Geobiology. John Wiley and Sons, Ltd. https://doi.org/10.1002/9781118295472.

Becking, L. (2016). Baas Becking’s Geobiology, or, Introduction to Environmental Science. Chichester West Sussex, Hoboken NJ: Wiley Blackwell.

Berggren, T., Bergström, U., Sundblad, G. and Östman, Ö. (2021). Warmer water increases early body growth of northern pike (Esox lucius), but mortality has larger impact on decreasing body sizes. Canadian Journal of Fisheries and Aquatic Sciences,1–11. https://doi.org/10.1139/cjfas-2020-0386.

Bilgin, A. and Bayraktar, H. D. (2021). Assessment of lake water quality using multivariate statistical techniques and chlorophyll-nutrient relationships: a case study of the Göksu Lake. Arabian Journal of Geosciences, 14(6):483. https://doi.org/
10.1007/s12517-021-06871-4.

Bolshakov, V. N. and Kryazhimskii, F. V. (2009). “Ecology of Population and Communities.” In Ecology, Vol I edited by A. Bodini and S. Klotz S, 1-10. EOLSS Publications.

Borja, A. and Elliott, M. (2007). What does ‘good ecological potential’ mean, within the European Water Framework Directive? Marine Pollution Bulletin, 54(10):1559–1564. https://doi.org/10.1016/j.marpolbul.2007.09.002.

Braun, L.-M, Brucet, S. and Mehner, T. (2021). Top-down and bottom-up effects on zooplankton size distribution in a deep stratified lake. Aquatic Ecology, 55(2):527–43. https://doi.org/10.1007/s10452-021-09843-8.

Chapman, R. N. (1928). Quantitative Results in the Prediction of Insect Abundance on the Basis of Biotic Potential and Environmental Resistance. Journal of Economic Entomology, 21(2):349–52. https://doi.org/10.1093/jee/21.2.349b.

Chapman, E. J. and Byron, C. J. (2018). The flexible application of carrying capacity in ecology. Global Ecology and Conservation, 13, e00365. https://doi.org/10.1016/
j.gecco.2017.e00365.

Chen, S., Ding, S., Tang, K. and Liu, Y. (2022). Invasive plant indirectly regulates native plant decomposition by affecting invertebrate communities. Limnologica, 92, 125939. https://doi.org/10.1016/J.LIMNO.2021.125939.

Cury, P.M., Shannon, L.J., Roux, J.-P., Daskalov, G.M., Jarre, A., Moloney, C.L. and Pauly, D. (2005). Trophodynamic indicators for an ecosystem approach to fisheries. ICES Journal of Marine Science, 62: 430–442. https://doi.org/10.1016/j.icesjms.
2004.12.006.

Danilov-Danilyan, V. and Rozental, O. (2022). Logistic Model of Population Toxicodynamics. Water Resources, 49:231–9.

Deng, D., Zhang, S., Li, Y., Meng, X., Yang, W., Li, Y. and Li, X. (2010). Effects of Microcystis aeruginosa on population dynamics and sexual reproduction in two Daphnia species. Journal of Plankton Research, 32(10):1385–1392. https://doi.org/
10.1093/plankt/fbq069.

Diel, P., Kiene, M., Martin-Creuzburg, D. and Laforsch, C. (2020). Knowing the enemy: Inducible defences in freshwater zooplankton. Diversity, 12(4):147. https://doi.org/
10.3390/d12040147.

Dorini, F. A., Cecconello, M. S. and Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33:160–173. https://doi.org/10.1016/j.cnsns.2015.09.009.

Drapes, S., Hall, M. D. and Phillips, B. L. (2021). Effect of habitat permanence on life-history: extending the Daphnia model into new climate spaces. Evolutionary Ecology, 35(4):595–607. https://doi.org/10.1007/s10682-021-10119-8.

Dykema, S. (2021). Variations in Zooplankton Communities as Indicators of Biological Responses to Climate Change and Recovery From Acidification in Northeastern and Maine Mountain Lakes. Master of Science Thesis, 82 pp. The Graduate School The University of Maine.

Ertaş, A., Yorulmaz, B. and Sukatar, A. (2022). Comparative analysis of biotic indices for assessment of water quality of Balaban Stream in West Anatolia, Turkey. Biologia, 77(3):721–730. https://doi.org/10.1007/s11756-021-00992-7.

Evans, W., Downs, C. T., Burnett, M. J. and O’Brien, G. C. (2022). Assessing fish community response to water quality and habitat stressors in KwaZulu-Natal, South Africa. African Journal of Aquatic Science, 47(1):47–65. https://doi.org/10.2989/
16085914.2021.1952158.

Fliedner, A., Rüdel, H., Lohmann, N., Buchmeier, G. and Koschorreck, J. (2018). Biota monitoring under the Water Framework Directive: On tissue choice and fish species selection. Environmental Pollution, 235:129–140. https://doi.org/10.1016/j.envpol.
2017.12.052.

Frank, K. T. and Leggett, W. C. (1994). Fisheries ecology in the context of ecological and evolutionary theory. Annual Review of Ecology and Systematics, 25:401-422.

Fu, H., Özkan, K., Yuan, G., Johansson, L. S., Søndergaard, M., Lauridsen, T. L. and Jeppesen, E. (2021). Abiotic and biotic drivers of temporal dynamics in the spatial heterogeneity of zooplankton communities across lakes in recovery from eutrophication. Science of The Total Environment, 778:146368. https://doi.org/10.
1016/j.scitotenv.2021.146368.

Ge, Y. L., Luo, T., Ge, C. C., Zhan, R., Yu, J. H., Xi, Y. L. and Zhang, G. (2018). Comparison of the life-history parameters and competition outcome with Moina macrocopa between two morphs of Brachionus forficula. Scientific Reports, 8(1):6022. https://doi.org/10.1038/s41598-018-24441-9.

Ge, Y. L., Liu, L., Cao, M. M., Ge, C. C., Xi, Y. L. and Zhang, G. (2022). Ecological benefits of consistent expression of posterolateral spines in Brachionus calyciflorus. Journal of Freshwater Ecology, 37(1):85–101. https://doi.org/10.1080/02705060.
2021.2022022.

Gökçe, D. and Özhan, D. (2014). Effects of salinity tolerances on survival and life history of 2 cladocerans. Turkish Journal of Zoology, 38:347–53. https://doi.org/
10.3906/zoo-1304-21.

Gökçe, D., Köytepe, S. and Özcan, İ. (2018). Effects of nanoparticles on Daphnia magna population dynamics. Chemistry and Ecology, 34(4), 301-323. https://doi.org/
10.1080/02757540.2018.1429418.

Gökçe, D. (2019). “Wetland Importance and Management.” In Wetlands Management – Assessing Risk and Sustainable Solutions edited by Didem Gökçe, 1-11. IntechOpen, https://doi.org/10.5772/intechopen.82456.

Gökçe, D., Köytepe, S. and Özcan, İ. (2020). Assessing short-term effects of magnetite ferrite nanoparticles on Daphnia magna. Environmental Science and Pollution Research, 27(25):31489–504. https://doi.org/10.1007/s11356-020-09406-8.

Gökçe, D. (2022). The Importance and Effectiveness of Aquatic Biomonitoring In New Paradigms in Environmental Biomonitoring Using Plants, edited by S. Tiwari and S. B. Agrawal. Elsevier. https://doi.org/10.1016/B978-0-12-824351-0.00007-9.

Greer, B., McNamee, S. E., Boots, B., Cimarelli, L., Guillebault, D., Helmi, K., Marcheggiani, S., Panaiotov, S., Breitenbach, U., Akçaalan, R., Medlin, L. K., Kittler, K., Elliott, C. T. and Campbell, K. (2016). A validated UPLC–MS/MS method for the surveillance of ten aquatic biotoxins in European brackish and freshwater systems. Harmful Algae, 55, 31–40. https://doi.org/10.1016/
j.hal.2016.01.006.

Grizzetti, B., Liquete, C., Pistocchi, A., Vigiak, O., Zulian, G., Bouraoui, F., de Roo, A. and Cardoso, A. C. (2019). Relationship between ecological condition and ecosystem services in European rivers, lakes and coastal waters. Science of The Total Environment, 671:452–465. https://doi.org/10.1016/j.scitotenv.2019.03.155.

Gross, E. M. (2022). Aquatic chemical ecology meets ecotoxicology. Aquatic Ecology. https://doi.org/10.1007/s10452-021-09938-2.

Grossman, G. D. and Simon, T. N. (2020). Density-dependent effects on salmonid populations: A review. Ecology of Freshwater Fish, 29(3):400–418. https://doi.org/
10.1111/EFF.12523.

Gu, L., Xu, Y., Yang, T., Qin, S., Zhang, L., Sun, Y., Huang, Y. and Yang, Z. (2021). Predator-induced allometric changes in the tail spin length of Daphnia : a distinct resource allocation strategy. Journal of Plankton Research, 43(6):884–893. https://doi.org/10.1093/plankt/fbab063.

Guilhermino, L., Martins, A., Cunha, S. and Fernandes, J. O. (2021). Long-term adverse effects of microplastics on Daphnia magna reproduction and population growth rate at increased water temperature and light intensity: Combined effects of stressors and interactions. Science of The Total Environment, 784: 147082. https://doi.org/
10.1016/j.scitotenv.2021.147082.

Guilleux, C., Chen, Z., Campbell, P. G. C. and Fortin, C. (2022). Dissolution of silver nanoparticles in stratified estuarine mesocosms and silver accumulation in a simple planktonic freshwater trophic chain. Environments, 9(2):20. https://doi.org/
10.3390/environments9020020.

Gupta, D. K., Choudhary, D., Vishwakarma, A., Mudgal, M., Srivastava, A. K. and Singh, A. (2022). Microplastics in freshwater environment: occurrence, analysis, impact, control measures and challenges. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04139-2.

Guzman, I. de, Altieri, P., Elosegi, A., Pérez-Calpe, A. V., Schiller, D. von and González, J. M. (2022). Water diversion and pollution interactively shape freshwater food webs through bottom-up mechanisms. Global Change of Biology, 28(3):859–76. https://doi.org/10.1111/gcb.16026.

Hellawell, J. (1991). “Development of a Rationale for Monitoring.” In Monitoring for Conservation and Ecology: Development of a Rationale for Monitoring, edited by F. B. Goldsmith, 1-14. Chapman and Hall, London.

Hertler, S. C., Figueredo, A. J., Peñaherrera-Aguirre, M., Fernandes, H. B. F. and Woodley of Menie, M. A. (2018). “Thomas Robert Malthus, Stratification, and Subjugation: Closing the Commons and Opening the Factory.” In Life History Evolution, edited by Steven C. Hertler, Aurelio J. Figueredo, Mateo Peñaherrera-Aguirre, Heitor B. F. Fernandes, Michael A. Woodley of Menie, 91–104. Springer International Publishing. https://doi.org/10.1007/978-3-319-90125-1_6.

Hitchcock, J. N. (2022). Microplastics can alter phytoplankton community composition. Science of The Total Environment, 819:153074. https://doi.org/10.1016/
j.scitotenv.2022.153074.

Holt, E. A., Miller, S. W., 2011. Bioindicators: using organisms to measure environmental impacts. Nature Education Knowledge, 2 (2):8.

Huang, J., Li, Y., Sun, Y., Zhang, L., Lyu, K. and Yang, Z. (2022). Size-specific sensitivity of cladocerans to freshwater salinization: Evidences from the changes in life history and population dynamics. Environmental Pollution, 296:118770. https://doi.org/10.1016/j.envpol.2021.118770.

Huntsman, B. M., Lynch, A. J. and Caldwell, C. A. (2021). Interacting effects of density‐dependent and density‐independent factors on growth rates in southwestern cutthroat trout populations. Transactions of the American Fisheries Society, 150(5):651–664. https://doi.org/10.1002/tafs.10319.

Jeppesen, E., Nõges, P., Davidson, T. A., Haberman, J., Nõges, T., Blank, K., Lauridsen, T. L., Søndergaard, M., Sayer, C., Laugaste, R., Johansson, L. S., Bjerring, R. and Amsinck, S. L. (2011). Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 676(1):279–297. https://doi.org/10.1007/s10750-011-0831-0.

Jia, J., Chen, Q., Ren, H., Lu, R., He, H. and Gu, P. (2022). Phytoplankton composition and their related factors in five different lakes in China: Implications for lake management. International Journal of Environmental Research and Public Health, 19(5):3135. https://doi.org/10.3390/ijerph19053135.

Jonsson, N., Jonsson, B. and Hansen, L. P. (1998). The relative role of density‐dependent and density‐independent survival in the life cycle of Atlantic salmon Salmo salar. Journal of Animal Ecology, 67(5), 751–762. https://doi.org/10.1046/j.1365-2656.
1998.00237.x.

Jordan, C. F. (2022). “A Thermodynamic Definition of Ecosystems.” In Evolution from a Thermodynamic Perspective edited by C. F. Jordon, 19–24, Springer. https://doi.org/
10.1007/978-3-030-85186-6_3.

Jørgensen, S. E. (2010). Ecosystem services, sustainability and thermodynamic indicators. Ecological Complexity, 7(3):311–3. https://doi.org/10.1016/j.ecocom.2009.12.003.

Jørgensen, S. E., Nielsen, S. N. and Fath, B. D. (2016). Recent progress in systems ecology. Ecological Modelling, 319:112–118 https://doi.org/10.1016/j.ecolmodel.
2015.08.007.

Kato-Noguchi, H. (2020). Involvement of allelopathy in the invasive potential of Tithonia diversifolia. Plants, 9:766. https://doi.org/10.3390/plants9060766.

Khan, R. M., Salehi, B., Mahdianpari, M., Mohammadimanesh, F., Mountrakis, G. and Quackenbush, L. J. (2021). A Meta-Analysis on harmful algal bloom (HAB) detection and monitoring: A remote sensing perspective. Remote Sensing, 13(21):4347. https://doi.org/10.3390/rs13214347.

Kost, C. (2008). Chemical Communication. In Encyclopedia of Ecology, Five-Volume Set, edited by S. E. Jørgensen and B. D. Fath, 557–575. Academic Press. https://doi.org/10.1016/B978-008045405-4.00036-7.

Köker, L., Akçaalan, R., Dittmann, E. and Albay, M. (2021). Depth profiles of protein-bound microcystin in Küçükçekmece Lagoon. Toxicon, 198:156–163. https://doi.org/10.1016/j.toxicon.2021.05.005.

Korponai, J. L., Kövér, C., López-Blanco, C., Gyulai, I., Forró, L. and Katalinic, A. (2020). Effect of Temperature on the Size of Sedimentary Remains of Littoral Chydorids. Water, 12(5):1309. https://doi.org/10.3390/w12051309.

Korponai, J. and Selmeczy, G. (2022). The response of the plankton community to environmental stress. Water, 14(3):354. https://doi.org/10.3390/w14030354.

Krebs, C. J. (1985). Ecology, The Experimental Analysis of Distribution and Abundance. 3rd ed. New York, NY: Harper and Row.

Krtolica, I., Cvijanović, D., Obradović, Đ., Novković, M., Milošević, D., Savić, D., Vojinović-Miloradov, M. and Radulović, S. (2021). Water quality and macrophytes in the Danube River: Artificial neural network modelling. Ecological Indicators, 121:107076. https://doi.org/10.1016/j.ecolind.2020.107076.

Kyner, W. T. and Sánchez, D. A. (1978). Asymptotic and numerical approximation of roots of Lotka’s equation. Theoretical Population Biology, 13(1):112–120. https://doi.org/10.1016/0040-5809(78)90038-2.

Laforsch, C. and Tollrian, R. (2009). “Cyclomorphosis and Phenotypic Changes.” In Encyclopedia of Inland Waters, edited by Gene E. Likens, 643–650. Elsevier, Boston. https://doi.org/10.1016/B978-012370626-3.00150-2.

Le, V. van, Tran, Q. G., Ko, S. R., Lee, S. A., Oh, H. M., Kim, H. S. and Ahn, C. Y. (2022). How do freshwater microalgae and cyanobacteria respond to antibiotics? Critical Reviews in Biotechnology, 1–21. https://doi.org/10.1080/07388551.
2022.2026870.

Lee, G. H., Vonk, J. A., Verdonschot, R. C. M., Kraak, M. H. S., Verdonschot, P. F. M. and Huisman, J. (2021). Eutrophication induces shifts in the trophic position of invertebrates in aquatic food webs. Ecology, 102(3): e03275. https://doi.org/
10.1002/ecy.3275.

Lobo, F. de L., Nagel, G. W., Maciel, D. A., Carvalho, L. A. S. de, Martins, V. S., Barbosa, C. C. F. and Novo, E. M. L. de M. (2021). AlgaeMAp: algae bloom monitoring application for inland waters in Latin America. Remote Sensing, 13(15):2874. https://doi.org/10.3390/rs13152874.

Lotka, A. J. (1922). Contribution to the Energetics of Evolution. Proceedings of the National Academy of Sciences of the United States of America, 8(6):147–51. https://doi.org/10.1073/pnas.8.6.147.

Luquin-Covarrubias, M. A. and Morales-Bojórquez, E. (2021). Effects of stochastic growth on population dynamics and management quantities estimated from an integrated catch-at-length assessment model: Panopea globosa as case study. Ecological Modelling, 440:109384. https://doi.org/10.1016/j.ecolmodel.2020.
109384.

Meyer-Milne, E., Brendonck, L. and Pinceel, T. (2021). Egg morphology may underpin the successful distribution of large branchiopods in temporary waters. Aquatic Ecology, 55(1):237–251. https://doi.org/10.1007/s10452-020-09826-1.

Michaelian, K. (2005). Thermodynamic stability of ecosystems. Journal of Theoretical Biology, 237(3):323–35. https://doi.org/10.1016/j.jtbi.2005.04.019.

Michler-Kozma, D. N., Kruckenfellner, L., Heitkamp, A., Ebke, K. P. and Gabel, F. (2022). Uptake and transfer of polyamide microplastics in a freshwater mesocosm study. Water, 14(6):887. https://doi.org/10.3390/w14060887.

Mikolajczyk, S., Warenik-Bany, M. and Pajurek, M. (2022). Dioxins and PCBs in freshwater fish and sediments from Polish lakes. Food Additives & Contaminants: Part B, 1–9. https://doi.org/10.1080/19393210.2022.2055154.

Mulderij, G., van Nes, E. H. and van Donk, E. (2007). Macrophyte–phytoplankton interactions: The relative importance of allelopathy versus other factors. Ecological Modelling, 204(1–2):85–92. https://doi.org/10.1016/j.ecolmodel.2006.12.020.

Muñoz-Colmenares, M. E., Sendra, M. D., Sòria-Perpinyà, X., Soria, J. M. and Vicente, E. (2021). The use of zooplankton metrics to determine the trophic status and ecological potential: an approach in a large mediterranean watershed. Water, 13(17):2382. https://doi.org/10.3390/w13172382.

Nam, S. H., Lee, J. and An, Y. J. (2022). Towards understanding the impact of plastics on freshwater and marine microalgae: A review of the mechanisms and toxicity endpoints. Journal of Hazardous Materials, 423:127174. https://doi.org/10.1016/
J.JHAZMAT.2021.127174.

Neal, D. (2003). Density-independent growth and overproduction. In Introduction to Population Biology, 53–67. Cambridge University Press. https://doi.org/10.1017/
CBO9780511809132.007.

Nielsen, S. N., Müller, F., Marques, J. C., Bastianoni, S. and Jørgensen, S. E. (2020). Thermodynamics in ecology-an introductory review. Entropy (Basel). https://doi.org/10.3390/e22080820.

Orr, J. A., Luijckx, P., Arnoli, J.-F., Jackson, A. L. and Piggott, J. J. (2022). Rapid evolution generates synergism between multiple stressors: Linking theory and an evolution experiment. Global Change Biology, 28(5):1740–52. https://doi.org/
10.1111/gcb.15633.

Özdemir, C. D., Saygı, Y., Gündüz, E., Demirkalp, F. Y. and Karacaoğlu, Ç. (2021). Assessment of the zooplankton community structure of the coastal Uzungöl Lagoon (Kızılırmak Delta, Turkey) based on community indices and physicochemical parameters. Turkish Journal of Zoology, 45(1):33–45. https://doi.org/10.3906/zoo-2006-9.

Öztürk, S., Dügel, M. and Çiçek, E. (2022). Seasonal distribution of Ephemeroptera (Insecta) fauna and relationship among physicochemical parameters in the Ceyhan Basin. Aquatic Sciences and Engineering. https://doi.org/10.26650/ASE2022
1069026.

Padisák, J., Borics, G., Grigorszky, I. and Soróczki-Pintér, É. (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: The assemblage index. Hydrobiologia, 553(1):1–14. https://doi.org/10.1007/s10750-005-1393-9.

Paredes del Puerto, J. M., Paracampo, A. H., García, I. D., Maiztegui, T., Garcia de Souza, J. R., Maroñas, M. E. and Colautti, D. C. (2021). Fish assemblages and water quality in Pampean Streams (Argentina) along an urbanization gradient. Hydrobiologia, 848(19):4493–4510. https://doi.org/10.1007/s10750-021-04657-z.

Peternel, A., Gaberščik, A., Zelnik, I., Holcar, M. and Germ, M. (2022). Long-term changes in macrophyte distribution and abundance in a lowland river. Plants, 11(3):401. https://doi.org/10.3390/plants11030401.

Phillips, G., Lyche-Solheim, A., Skjelbred, B., Mischke, U., Drakare, S., Free, G., Järvinen, M., de Hoyos, C., Morabito, G., Poikane, S. and Carvalho, L. (2013). A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia, 704(1):75–95. https://doi.org/10.1007/s10750-012-1390-8.

Poikane, S., Kelly, M. and Cantonati, M. (2016). Benthic algal assessment of ecological status in European lakes and rivers: challenges and opportunities. Science Total Environment, 568:603–613. https://doi.org/10.1016/j.scitotenv.2016.02.027.

Reynolds, C. S. (2006). Community assembly in the plankton: pattern, process and dynamics. In The Ecology of Phytoplankton, edited by C. S. Reynolds, 302–386. Cambridge University Press, Cambridge. https://doi.org/10.1017/
CBO9780511542145.008.

Rostam, N. A. P., Malim, N. H. A. H., Abdullah, R., Ahmad, A. L., Ooi, B. S. and Chan, D. J. C. (2021). A complete proposed framework for coastal water quality monitoring system with algae predictive model. IEEE Access, 9:108249–108265. https://doi.org/10.1109/ACCESS.2021.3102044.

Sainsbury, K. J. (1980). Effect of individual variability on the von Bertalanffy growth equation. Canadian Journal of Fisheries and Aquatic Sciences, 37(2):241–7. https://doi.org/10.1139/f80-031.

Sarkar, S. (2012). Environmental philosophy: From theory to practice. Wiley-Blackwell, Chichester.

Schrödinger, E. (1944). What is Life? The Physical Aspect of the Living Cell. Cambridge University Press.

Schwarzer, M., Brehm, J., Vollmer, M., Jasinski, J., Xu, C., Zainuddin, S., Fröhlich, T., Schott, M., Scheibel, T., Laforsch, C. (2022). Shape, size, and polymer dependent effects of microplastics on Daphnia magna. Journal of Hazardous Materials, 426:128136. https://doi.org/10.1016/j.jhazmat.2021.128136.

Seto, M., Iwasa, Y. (2020). How thermodynamics illuminates population interactions in microbial communities. Frontiers in Ecology and Evolution. https://doi.org/
10.3389/fevo.2020.602809.

Ślusarczyk, M., Chlebicki, W., Pijanowska, J. and Radzikowski, J. (2019). The role of the refractory period in diapause length determination in a freshwater crustacean. Scientific Reports, 9(1):11905. https://doi.org/10.1038/s41598-019-48389-6.

Ślusarczyk, M., Grabowski, T. and Pietrzak, B. (2017). Quantification of floating ephippia in lakes: a step to a better understanding of high dispersal propensity of freshwater plankters. Hydrobiologia, 798(1):61–72. https://doi.org/10.1007/s10750-015-2437-4.

Stoddard, J. L. (2004). Use of ecological regions in aquatic assessments of ecological condition. Environmental Management, 34(S1):S61–S70. https://doi.org/10.1007/
s00267-003-0193-0.

Stoy, P. C. (2010). “Thermodynamic approaches to ecosystem behaviour: fundamental principles with case studies from forest succession and management.” In Ecosystem Ecology edited by D. G. Raffaelli and C. L. J. Frid, 40–64. Cambridge: Cambridge University Press;. https://doi.org/10.1017/CBO9780511750458.004.

Sun, S., Hu, S., Zhang, B., Sun, X. and Xu, N. (2021). Allelopathic effects and potential allelochemical of Sargassum fusiforme on red tide microalgae Heterosigma akashiwo. Marine Pollution Bulletin, 170:112673. https://doi.org/10.1016/
j.marpolbul.2021.112673.

Szczerbinska, N. and Gałczynska, M. (2015). Biological methods used to assess surface water quality. Archives of Polish Fisheries, 23 (4):185–196. https://doi.org/10.1515/
aopf-2015-0021.

Ta, A. T. and Babel, S. (2022). Sources, Occurrence, and Analysis of Microplastics in Freshwater Environments. In Plastic and Microplastic in the Environment, edited by Arif Ahamad, Pardeep Singh, Dhanesh Tiwary, 1–17. Wiley. https://doi.org/
10.1002/9781119800897.ch1.

Tavşanoğlu, Ü. N., Šorf, M., Stefanidis, K., Brucet, S., Türkan, S. and Agasild, H. (2017). Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: a pan-European mesocosm experiment. Aquatic Ecology, 51(2):257–73. https://doi.
org/10.1007/s10452-017-9615-6.

Teunen, L., de Jonge, M., Malarvannan, G., Covaci, A., Belpaire, C., Focant, J. F., Blust, R. and Bervoets, L. (2022). The relevance of European Biota Quality Standards on the ecological water quality as determined by the multimetric macro-invertebrate index: A Flemish case study. Ecotoxicology and Environmental Safety, 231:113222. https://doi.org/10.1016/j.ecoenv.2022.113222.

Thieme, H. R. (2003). Mathematics in population biology. Princeton University Press, Princeton. ISBN 0-691-09290-7.

Tinker, M. T., Yee, J. L., Laidre, K. L., Hatfield, B. B., Harris, M. D., Tomoleoni, J. A., Bell, T. W., Saarman, E., Carswell, L. P. and Miles, A. K. (2021). Habitat features predict carrying capacity of a recovering marine carnivore. The Journal of Wildlife Management, 85(2):303–323. https://doi.org/10.1002/jwmg.21985.

Vagnon, C., Cattanéo, F., Guillard, J. and Frossard, V. (2022). Inferring the trophic attributes and consequences of co-occurring lake invaders using an allometric niche model. Biological Invasions. https://doi.org/10.1007/s10530-022-02745-2.

van de Perre, D., Li, D., Yao, K. S., Lei, H. J., van den Brink, P. J. and Ying, G. G. (2022). The effects of the chemotherapy drug cyclophosphamide on the structure and functioning of freshwater communities under sub-tropical conditions: A mesocosm study. Science of The Total Environment, 806:150678. https://doi.org/10.1016/
J.SCITOTENV.2021.150678.

Vanderpont, A. K., Lobson, C., Lu, Z., Luong, K., Arentsen, M., Vera, T., Moore, D., White, M. S., Prosser, R. S., Wong, C. S. and Hanson, M. L. (2022). Fate of thiamethoxam from treated seeds in mesocosms and response of aquatic invertebrate communities. Ecotoxicology, 31(2):341–356. https://doi.org/10.1007/s10646-021-02500-8.

Vijayaraj, V., Laviale, M., Allen, J., Amoussou, N., Hilt, S., Hölker, F., Kipferler, N., Leflaive, J., López Moreira, M. G., Polst, B., Schmitt-Jansen, M., Stibor, H. and Gross, E. (2022). Multiple-stressor exposure of aquatic food webs: Nitrate and warming modulate the effect of pesticides. Water Research, 118325:216. https://doi.org/10.1016/j.watres.2022.118325.

Wang, Y., Liu, P., Wu, C., Li, X., An, R. and Xie, K. (2021). Reservoir ecological operation by quantifying outflow disturbance to aquatic community dynamics. Environmental Research Letters, 16(7):74005. https://doi.org/10.1088/1748-9326/ac08c2.

Wheeler, M. W., Park, R. M. and Bailer, A. J. (2006). Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environmental Toxicology and Chemistry, 25(5):1441-1444. https://doi.org/10.1897/05-320r.1.

Więski, K. and Ślusarczyk, M. (2022). On the different role of alarm substances and fish kairomones in diapause induction in a freshwater planktonic crustacean. Journal of Plankton Research, 44(2):278–287. https://doi.org/10.1093/plankt/fbac004.

Wold, L. A., Moore, B. C. and Dasgupta, N. (2005). Life-history responses of Daphnia pulex with exposure to aluminum sulfate. Lake and Reservoir Management, 21(4):383–390. https://doi.org/10.1080/07438140509354443.

Wu, Z., Chen, M., Fu, X., Ouyang, L. and Wu, X. (2022). Thermodynamic analysis of an ecologically restored plant community: Ecological niche. Ecological Modelling, 464:109839. https://doi.org/10.1016/j.ecolmodel.2021.109839.

Yallop, M., Wang, Y., Masuda, S., Daniels, J., Ockenden, A., Masani, H., Scott, T. B., Xie, F., Ryan, M., Jones, C. and Porter, A. E. (2022). Quantifying impacts of titanium dioxide nanoparticles on natural assemblages of riverine phytobenthos and phytoplankton in an outdoor setting. Science of The Total Environment, 831:154616. https://doi.org/10.1016/j.scitotenv.2022.154616.

Yang, N., Wang, L., Lin, L., Li, Y., Zhang, W., Niu, L., Zhang, H. and Wang, L. (2022). Pelagic-benthic coupling of the microbial food web modifies nutrient cycles along a cascade-dammed river. Frontiers of Environmental Science & Engineering, 16(4):50. https://doi.org/10.1007/s11783-021-1484-5.

Ye, Z., Molinier, C., Zhao, C., Haag, C.R. and Lynch, M. (2019). Genetic control of male production in Daphnia pulex. The Proceedings of the National Academy of Sciences. 116(31):201903553. http://doi.org/10.1073/pnas.1903553116.

Yoshioka, H. (2019). A simplified stochastic optimization model for logistic dynamics with control-dependent carrying capacity. Journal of Biological Dynamics, 13(1):148–176. https://doi.org/10.1080/17513758.2019.1576927.

Zhang, B., Kula, A., Mack, K. M. L., Zhai, L., Ryce, A. L. and Ni, W.-M. (2017). Carrying capacity in a heterogeneous environment with habitat connectivity. Ecological Letters, 20(9):1118–28. https://doi.org/10.1111/ele.12807.

Zhang, B., de Angelis, D. L. and Ni, W.-M. (2021). Carrying capacity of spatially distributed metapopulations. Trends in Ecology and Evolution, 36(2):164–73. https://doi.org/10.1016/j.tree.2020.10.007.

Zhang, Q., Fisher, T. R., Trentacoste, E. M., Buchanan, C., Gustafson, A. B., Karrh, R., Murphy, R. R., Keisman, J., Wu, C., Tian, R., Testa, J. M. and Tango, P. J. (2021). Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management. Water Research, 188:116407. https://doi.org/10.1016/J.WATRES.2020.116407.

Zhang, Q., Dong, X., Yang, X., Liu, E., Lin, Q., Cheng, L., Liu, L. and Jeppesen, E. (2022). Aquatic macrophyte fluctuations since the 1900s in the third largest Chinese freshwater lake (Lake Taihu): Evidences, drivers and management implications. CATENA, 213:106153. https://doi.org/10.1016/j.catena.2022.106153.

Zhao, C., Yang, S., Liu, J., Liu, C., Hao, F., Wang, Z., Zhang, H., Song, J., Mitrovic, S. M. and Lim, R. P. (2018). Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control. Water Research, 141:96–108. https://doi.org/10.1016/
j.watres.2018.05.025.

Zhou, Q., Lu, N., Gu, L., Sun, Y., Zhang, L., Huang, Y., Chen, Y. and Yang, Z. (2020). Daphnia enhances relative reproductive allocation in response to toxic microcystis: Changes in the performance of parthenogenetic and sexual reproduction. Environmental Pollution, 259:113890. https://doi.org/10.1016/j.envpol.2019.113890.

Zhu, X., Dao, G., Tao, Y., Zhan, X. and Hu, H. (2021). A review on control of harmful algal blooms by plant-derived allelochemicals. Journal of Hazardous Materials, 401:123403. https://doi.org/10.1016/j.jhazmat.2020.123403.

Zuo, S., Mei, H., Ye, L., Wang, J. and Ma, S. (2012). Effects of water quality characteristics on the algicidal property of Alternanthera philoxeroides (Mart.) Griseb. in an aquatic ecosystem. Biochemical Systematics and Ecology, 43:93–100. https://doi.org/10.1016/J.BSE.2012.03.003.

Category: