Publish with Nova Science Publishers
We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!
$39.50
Varsha Bhardwaj and Amar Ballabh
Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
Part of the book: Advances in Chemistry Research. Volume 76
Chapter DOI: https://doi.org/10.52305/FHWI1475
Supramolecular gels belong to the class of soft materials, which can display both, solid- and liquid-like properties under the influence of external mechanical stress. They are typically dilute systems containing a very small amount of Low Molecular Weight Gelator (LMWG) which can self-assemble into nano-scale network causing the solvent phase to immobilize, forming a gel. This happens as a result of a combination of complementary supramolecular interactions such as electrostatic, hydrophobic, van der Waals, hydrogen bonding, π-π, etc. to generate hierarchically ordered supermolecules. Molecular gels are highly functional materials which can respond to external stimuli like heat, light, ultrasound, change in pH, presence of redox-active species, ions, enzymes, applied voltage, magnetic field, etc. In this chapter, we intend to discuss the various applications of low molecular weight gelators which highlight their key advantages like exquisite tunability, self-healing ability, self-programmability and certain aspects which can guide our way to design such functional materials a priori, which has so far, remained a challenging task. We have tried to summarize the recent advancements in terms of the widespread applications they offer owing to their exclusive physical and chemical properties.
Keywords: supramolecular gels, low molecular weight gelators, selfassembly, self-healing
[1] Lloyd, D. J. Colloid Chemistry, Vol. 1. (Chemical Catalog Co., New York, 1926).
[2] Zweep, N. & van Esch, J. H. Chapter 1. The Design of Molecular Gelators. in
Functional Molecular Gels (eds. Escuder, B. & Miravet, J. F.) 1–29 (The Royal
Society of Chemistry, 2014). DOI: 10.1039/9781849737371-00001.
[3] Molecular Gels. Materials with Self-Assembled Fibrillar Networks (Eds. R. G.
Weiss, P. Terech). (Springer, Dordrecht, 2006).
[4] van Esch, J. H. & Feringa, B. L. New Functional Materials Based on Self Assembling Organogels: From Serendipity towards Design. Angew. Chem. Int. Ed.
39, 2263–2266 (2000).
[5] Draper, E. R. & Adams, D. J. Low-Molecular-Weight Gels: The State of the Art.
Chem 3, 390–410 (2017).
[6] Chivers, P. R. A. & Smith, D. K. Shaping and structuring supramolecular gels. Nat.
Rev. Mater. 4, 463–478 (2019).
[7] Adams, D. J. Personal Perspective on Understanding Low Molecular Weight Gels.
J. Am. Chem. Soc. 144, 11047–11053 (2022).
[8] Rohner, S. S., Ruiz-Olles, J. & Smith, D. K. Speed versus stability – structure–
activity effect on the assembly of two-component gels. RSC Adv. 5, 27190–27196
(2015).
[9] Sangeetha, N. M. & Maitra, U. Supramolecular gels: Functions and uses. Chem.
Soc. Rev. 34, 821–836 (2005).
[10] Weiss, R. G. Chapter 1: Introduction: An Overview of the ‘What’ and ‘Why’ of
Molecular Gels. in Molecular Gels: Structure and Dynamics (ed. Weiss, R. G.) 1–
27 (The Royal Society of Chemistry, 2018). DOI: 10.1039/9781788013147-00001.
[11] Mahinroosta, M., Jomeh Farsangi, Z., Allahverdi, A. & Shakoori, Z. Hydrogels as
intelligent materials: A brief review of synthesis, properties and applications.
Mater. Today Chem. 8, 42–55 (2018).
[12] Chang, H., Li, C., Huang, R., Su, R., Qi, W., & He, Z. Amphiphilic hydrogels for
biomedical applications. J. Mater. Chem. B 7, 2899–2910 (2019).
[13] Tam, A. Y.-Y. & Yam, V. W.-W. Recent advances in metallogels. Chem Soc Rev
42, 1540–1567 (2013).
[14] Lin, Y.-C., Kachar, B. & Weiss, R. G. Novel Family of Gelators of Organic Fluids
and the Structure of Their Gels. J. Am. Chem. Soc. 111, 5542–5551 (1989).
[15] Weiss, R. G. A Very Personal View of Molecular Organogels. Examples Showing
the Conceptual Links with Structurally Simple Gelators. Macromol. Symp. 385, 1–5 (2019).
[16] Bhardwaj, V. & Ballabh, A. Design, synthesis, and application of a new series of
organogelator using crystal engineering approach and solvent parameter study: A
synergetic approach. J. Mol. Liq. 322, 114520 (2021).
[17] Dastidar, P., Roy, R., Parveen, R., Ganguly, S., Majumder, J., & Paul, M. Designing
Soft Supramolecular Materials Using Intermolecular Interactions. In Functional
Supramolecular Materials: From Surfaces to MOFs (ed. Banerjee, R.) 37–74 (The
Royal Society of Chemistry, 2017). DOI: 10.1039/9781788010276-00037.
[18] Sun, Z., Li, Z., Qu, K., Zhang, Z., Niu, Y., Xu, W., & Ren, C. A review on recent
advances in gel adhesion and their potential applications. J. Mol. Liq. 325, 115254
(2021).
[19] Williams, G. T., Haynes, C. J. E., Fares, M., Caltagirone, C., Hiscock, J. R., & Gale,
P. A. Advances in applied supramolecular technologies. Chem. Soc. Rev. 50, 2737–2763 (2021).
[20] Banerjee, S., Das, R. K. & Maitra, U. Supramolecular gels ‘in action’. J. Mater.
Chem. 19, 6649–6687 (2009).
[21] Amabilino, D. B., Smith, D. K. & Steed, J. W. Supramolecular materials. Chem.
Soc. Rev. 46, 2404–2420 (2017).
[22] Hirst, A. R., Escuder, B., Miravet, J. F. & Smith, D. K. High-tech applications of
self-assembling supramolecular nanostructured gel-phase materials: From
regenerative medicine to electronic devices. Angew. Chemie – Int. Ed. 47, 8002–8018 (2008).
[23] Puigmartí-Luis, J. & Amabilino, D. B. Chapter 7. Optic and Electronic Applications
of Molecular Gels. in Functional Molecular Gels (eds. Escuder, B. & Miravet, J.
F.) 195–254 (The Royal Society of Chemistry, 2014).
DOI: 10.1039/9781849737371-00195.
[24] Yu, X., Chen, L., Zhang, M. & Yi, T. Low-molecular-mass gels responding to
ultrasound and mechanical stress: towards. Chem. Soc. Rev. 43, 5346–5371 (2014).
[25] Xiong, M., Wang, C., Zhang, G. & Zhang, D. Chapter 3. Molecular Gels
Responsive to Physical and Chemical Stimuli. in Functional Molecular Gels (eds.
Escuder, B. & Miravet, J. F.) 67–94 (The Royal Society of Chemistry, 2014).
DOI: 10.1039/9781849737371-00067.
[26] Jones, C. D. & Steed, J. W. Gels with sense : supramolecular materials that respond
to heat, light and sound. Chem. Soc. Rev. 45, 6546–6596 (2016).
[27] Panja, S. & Adams, D. J. Stimuli responsive dynamic transformations in
supramolecular gels. Chem. Soc. Rev. 50, 5165–5200 (2021).
[28] Roy, B., Saha, A., Esterrani, A. & Nandi, A. K. Time sensitive, temperature and pH
responsive photoluminescence behaviour of a melamine containing bicomponent
hydrogel. Soft Matter 6, 3337–3345 (2010).
[29] Ayabe, M., Kishida, T., Fujita, N., Sada, K. & Shinkai, S. Binary organogelators
which show light and temperature responsiveness. Org. Biomol. Chem. 1, 2744–2747 (2003).
[30] Guo, J., Yu, X., Zhang, Z. & Li, Y. Self-healing gels triggered by ultrasound with
color-tunable emission based on ion recognition. J. Colloid Interface Sci. 540, 134–141 (2019).
[31] Mi, W., Qu, Z., Sun, J., Sun, J., Zhang, F., & Ye, K. Luminescent non-traditional
π-gels fabricated from pyrimidine derivatives bearing carbazole for the detection of
acid vapors. Dye. Pigment. 150, 207–215 (2018).
[32] Cornwell, D. J. & Smith, D. K. Photo-patterned multi-domain multi-component
hybrid hydrogels. Chem. Commun. 56, 7029–7032 (2020).
[33] Schlichter, L., Piras, C. C. & Smith, D. K. Spatial and temporal diffusion-control of
dynamic multi-domain self-assembled gels. Chem. Sci. 12, 4162–4172 (2021).
[34] Salzano de Luna, M., Marturano, V., Manganelli, M., Santillo, C., Ambrogi, V.,
Filippone, G., & Cerruti, P. Light-responsive and self-healing behavior of
azobenzene-based supramolecular hydrogels. J. Colloid Interface Sci. 568, 16–24
(2020).
[35] Saito, N., Itoyama, S. & Kondo, Y. Multi-responsive organo- and hydrogelation
based on the supramolecular assembly of fluorocarbon- and hydrocarbon containing hybrid surfactants. J. Colloid Interface Sci. 588, 418–426 (2021).
[36] Panja, S., Dietrich, B., Shebanova, O., Smith, A. J. & Adams, D. J. Programming
Gels Over a Wide pH Range Using Multicomponent Systems. Angew. Chemie – Int.
Ed. 60, 9973–9977 (2021).
[37] Alsoliemy, A., Alrefaei, A. F., Almehmadi, S. J., Almehmadi, S. J., Hossan, A.,
Khalifa, M. E., & El-Metwaly, N. M. Synthesis, characterization and self-assembly
of new cholesteryl-substitued sym-tetrazine: Fluorescence, gelation and mesogenic
properties. J. Mol. Liq. 342, (2021).
[38] Miravet, J. F. & Escuder, B. Chapter 5. Molecular Gels as Containers for Molecular
Recognition, Reactivity and Catalysis. in Functional Molecular Gels (eds. Escuder,
B. & Miravet, J. F.) 117–156 (The Royal Society of Chemistry, 2014).
DOI: 10.1039/9781849737371-00117.
[39] Díaz, D. D., Kühbeck, D. & Koopmans, R. J. Stimuli-responsive gels as reaction
vessels and reusable catalysts. Chem. Soc. Rev. 40, 427–448 (2011).
[40] Wang, Q., Yang, Z., Wang, L., Ma, M. & Xu, B. Molecular hydrogel-immobilized
enzymes exhibit superactivity and high stability in organic solvents. Chem.
Commun. 1032–1034 (2007) DOI: 10.1039/b615223f.
[41] Rodríguez-Llansola, F., Miravet, J. F. & Escuder, B. Supramolecular catalysis with
extended aggregates and gels: Inversion of stereoselectivity caused by self assembly. Chem. – A Eur. J. 16, 8480–8486 (2010).
[42] Rodríguez-Llansola, F., Escuder, B., Hamley, I. W., Hayes, W. & Miravet, J. F.
Structural and morphological studies of the dipeptide based l-Pro-l-Val
organocatalytic gels and their rheological behaviour. Soft Matter 8, 8865–8872
(2012).
[43] Berdugo, C., Miravet, J. F. & Escuder, B. Substrate selective catalytic molecular
hydrogels: The role of the hydrophobic effect. Chem. Commun. 49, 10608–10610
(2013).
[44] Singh, N. & Escuder, B. Competition versus Cooperation in Catalytic
Hydrogelators for anti-Selective Mannich Reaction. Chem. – A Eur. J. 23, 9946–
9951 (2017).
[45] Araújo, M. & Escuder, B. Transient Catalytic Activity of a Triazole-based Gelator
Regulated by Molecular Gel Assembly/Disassembly. ChemistrySelect 2, 854–862
(2017).
[46] Araújo, M., Díaz-Oltra, S. & Escuder, B. Triazolyl-Based Molecular Gels as
Ligands for Autocatalytic ‘Click’ Reactions. Chem. – A Eur. J. 22, 8676–8684
(2016).
[47] Rodon Fores, J., Criado‐Gonzalez, M., Chaumont, A., Carvalho, A., Blanck, C.,
Schmutz, M., Serra, C. A., Boulmedais, F., Schaaf, P., & Jierry, L. Supported
Catalytically Active Supramolecular Hydrogels for Continuous Flow Chemistry.
Angew. Chemie 131, 18993–18998 (2019).
[48] Zacharias, S. C., Kamlar, M. & Sundén, H. Exploring Supramolecular Gels in Flow Type Chemistry – Design and Preparation of Stationary Phases. Ind. Eng. Chem.
Res. 60, 10056–10063 (2021).
[49] Piras, C. C., Slavik, P. & Smith, D. K. Self-Assembling Supramolecular Hybrid
Hydrogel Beads. Angew. Chemie Int. Ed. 59, 853 (2020).
[50] Panja, S., Panja, A. & Ghosh, K. Supramolecular gels in cyanide sensing: A review.
Mater. Chem. Front. 5, 584–602 (2021).
[51] Piepenbrock, M.-O. M., Lloyd, G. O., Clarke, N. & Steed, J. W. Metal- and Anion Binding Supramolecular Gels. Chem. Rev. 110, 1960–2004 (2010).
[52] Becker, T., Yong Goh, C., Jones, F., McIldowie, M. J., Mocerino, M., & Ogden,
M. I. Proline-functionalised calix[4]arene: An anion-triggered hydrogelator. Chem.
Commun. 3900–3902 (2008) DOI: 10.1039/b807248e.
[53] Cacace, M. G., Landau, E. M. & Ramsden, J. J. The Hofmeister series: salt and
solvent effects on interfacial phenomena. Quaterly Rev. Biophys. 30, 241–277
(1997).
[54] Yang, H.-H., Liu, P.-P., Hu, J.-P., Fang, H., Lin, Q., Hong, Y., Zhang, Y.-M., Qu,
W.-J., & Wei, T.-B. A fluorescent supramolecular gel and its application in the
ultrasensitive detection of CN-by anion-π interactions. Soft Matter 16, 9876–9881
(2020).
[55] Ghosh, S., Jana, P. & Ghosh, K. A naphthalimide-linked new pyridylazo phenol
derivative for selective sensing of cyanide ions (CN-) in sol-gel medium. Anal.
Methods 13, 695–702 (2021).
[56] Kumar, S., Nandi, S. K., Suman, S. & Haldar, D. A new dipeptide as a selective
gelator of Cu(II), Zn(II), and Pb(II). Cryst Eng Comm 22, 7975–7982 (2020).
[57] Chen, X., Zhou, Y., Zhang, G., Wang, J., Guo, C., & Wang, Y. Bifunctional
organogels based on pyridine-hydrazide for enrichment and detection of Cu2+,
Fe3+ and F−. Colloids Interface Sci. Commun. 44, 100489 (2021).
[58] Ghosh, S., Ghosh, S., Baildya, N. & Ghosh, K. Dehydroabietylamine-decorated
imino-phenols: Supramolecular gelation and gel phase selective detection of Fe3+,
Cu2+ and Hg2+ ions under different experimental conditions. New J. Chem. 46,
8817–8826 (2022).
[59] Wei, T.-B., Zhao, Q., Li, Z.-H., Dai, X.-Y., Niu, Y.-B., Yao, H., Zhang, Y.-M., Qu,
W.-J., & Lin, Q. Supramolecular organogel with aggregation-induced emission for
ultrasensitive detection and effective removal of Cu2+ and Hg2+ from aqueous
solution. Dye. Pigment. 192, 109436 (2021).
[60] Yao, H., Zhou, Q., Kan, X.-T., Niu, Y.-B., Naeem, M., Wei, T.-B., Lin, Q., &
Zhang, Y.-M. A signal amplification strategy for ultrasensitive detecting H2PO4−
using metal coordinated supramolecular gel. J. Mol. Liq. 321, 114500 (2021).
[61] Mohar, M. & Das, T. Cascade sensing of iodide and fluoride by tryptophan derived
low molecular weight gelator. Colloids Interface Sci. Commun. 30, 100179 (2019).
[62] Patel, A. M., Ray, D., Aswal, V. K. & Ballabh, A. Probing the mechanism of
gelation and anion sensing capability of a thiazole based amide gelator: A case
study. Colloids Surfaces A Physicochem. Eng. Asp. 607, 125430 (2020).
[63] Patel, A. M., Ray, D., Aswal, V. K. & Ballabh, A. Probing the supramolecular
assembly in solid, solution and gel phase in uriede based thiazole derivatives and
its potential application as iodide ion sensor. J. Mol. Liq. 362, 119763 (2022).
[64] Terech, P. Molecular Gels : A Reservoir for Organic Rod ‐ Like Nano ‐ Objects. in
Fullerenes, Nanotubes and Carbon Nanostructures 293–307 (Taylor & Francis,
Inc, 2007). DOI: 10.1081/FST-200039322.
[65] Sada, K., Takeuchi, M., Fujita, N., Numata, M. & Shinkai, S. Post-polymerization
of preorganized assemblies for creating shape-controlled functional materials.
Chem. Soc. Rev. 36, 415–435 (2007).
[66] Di Chenna, P. H. Gels as templates for the syntheses of shape-controlled
nanostructured materials. Gels 4, 4–5 (2018).
[67] Friggeri, A., Bommel, K. J. C. Van & Shinkai, S. Chapter 25. Gels of low
molecular-mass organic gelators as templates. in Molecular Gels. Materials with
Self-Assembled Fibrillar Networks (eds. Weiss, R. G. & Terech, P.) 857–893
(Springer International Publishing, The Netherlands, 2006).
[68] Kar, T. & Das, P. K. Chapter 8. Molecular Gels as Templates for Nanostructured
Materials. in Functional Molecular Gels (eds. Escuder, B. & Miravet, J. F.) 255–
303 (The Royal Society of Chemistry, 2014). DOI: 10.1039/9781849737371-00255.
[69] Bellotto, O., Cringoli, M. C., Perathoner, S., Fornasiero, P. & Marchesan, S. Peptide
gelators to template inorganic nanoparticle formation. Gels 7, 1–14 (2021).
[70] Hu, J. & Yang, Y. Single-handed helical polybissilsesquioxane nanotubes and
mesoporous nanofibers prepared by an external templating approach using low molecular-weight gelators. Gels 3, (2017).
[71] Yadav, P. & Ballabh, A. Odd–even effect in a thiazole based organogelator:
understanding the interplay of non-covalent interactions on property and
applications. New J. Chem. 39, 721–730 (2015).
[72] Wang, R., Cui, J., Wan, X. & Zhang, J. Controlled chiral arrangement of silver
nanoparticles in supramolecular gels modulated by the cooling rate. Chem.
Commun. 55, 4949–4952 (2019).
[73] Truong, W. T., Lewis, L. & Thordarson, P. Chapter 6. Biomedical Applications of
Molecular Gels. in Functional Molecular Gels (eds. Escuder, B. & Miravet, J. F.)
157–194 (The Royal Society of Chemistry, 2014). DOI: 10.1039/9781849737371-00157.
[74] James, T. D., Sandanakaye, K. R. A. S. & Shinkai, S. A glucose-selective molecular
fluorescence sensor. Angew. Chemie-International Ed. 33, 2207–2209 (1994).
[75] Crane, B. C., Barwell, N. P., Gopal, P., Gopichand, M., Higgs, T., James, T. D.,
Jones, C. M., Mackenzie, A., Mulavisala, K. P., & Paterson, W. The Development
of a Continuous Intravascular Glucose Monitoring Sensor. J. Diabetes Sci. Technol.
9, 751–761 (2015).
[76] Shibayama, M., Li, X. & Sakai, T. Gels: From Soft Matter to BioMatter. Ind. Eng.
Chem. Res. 57, 1121–1128 (2018).
[77] Zhang, K., Feng, Q., Fang, Z., Gu, L. & Bian, L. Structurally Dynamic Hydrogels
for Biomedical Applications: Pursuing a Fine Balance between Macroscopic
Stability and Microscopic Dynamics. Chem. Rev. 121, 11149–11193 (2021).
[78] Mehwish, N., Dou, X., Zhao, Y. & Feng, C. L. Supramolecular fluorescent
hydrogelators as bio-imaging probes. Mater. Horizons 6, 14–44 (2019).
[79] Debnath, S. & Ulijin, R. V. Chapter 4. Enzyme-Responsive Molecular Gels. in
Functional Molecular Gels (eds. Escuder, B. & Miravet, J. F.) 95–115 (The Royal
Society of Chemistry, 2014).
[80] Skilling, K. J., Citossi, F., Bradshaw, T. D., Ashford, M., Kellam, B., & Marlow,
M. Insights into low molecular mass organic gelators: A focus on drug delivery and
tissue engineering applications. Soft Matter 10, 237–256 (2014).
[81] Du, X., Zhou, J., Shi, J. & Xu, B. Supramolecular Hydrogelators and Hydrogels :
From Soft Matter to Molecular Biomaterials. Chem. Rev. 115, 13165–13307
(2015).
[82] Gao, Y., Kuang, Y., Guo, Z.-F., Guo, Z., Krauss, I. J., & Xu, B. Enzyme-Instructed
Molecular Self-assembly Confers Nanofibers and a Supramolecular Hydrogel of
Taxol Derivative. J. Am. Chem. Soc. 131, 13576–13577 (2009).
[83] Nolan, M. C., Fuentes Caparrós, A. M., Dietrich, B., Barrow, M., Cross, E. R.,
Bleuel, M., King, S. M., & Adams, D. J. Optimising low molecular weight
hydrogels for automated 3D printing. Soft Matter 13, 8426–8432 (2017).
[84] Petit, N., Dyer, J. M., Clerens, S., Gerrard, J. A. & Domigan, L. J. Oral delivery of
self-assembling bioactive peptides to target gastrointestinal tract disease. Food
Funct. 11, 9468–9488 (2020).
[85] Jervis, P. J., Amorim, C., Pereira, T., Martins, J. A. & Ferreira, P. M. T. Exploring
the properties and potential biomedical applications of NSAID-capped peptide
hydrogels. Soft Matter 16, 10001–10012 (2020).
[86] Parveen, R. & Dastidar, P. Supramolecular Gels by Design: Towards the
Development of Topical Gels for Self-Delivery Application. Chem. – A Eur. J. 22,
9257–9266 (2016).
[87] Limón, D., Gil-Lianes, P., Rodríguez-Cid, L., Alvarado, H. L., Díaz-Garrido, N.,
Mallandrich, M., Baldomà, L., Calpena, A. C., Domingo, C., Aliaga-Alcalde, N.,
González-Campo, A., & Pérez-García, L. Supramolecular Hydrogels Consisting of
Nanofibers Increase the Bioavailability of Curcuminoids in Inflammatory Skin
Diseases. ACS Appl. Nano Mater. (2022) DOI: 10.1021/acsanm.2c01482.
[88] Falcone, N., Shao, T., Andoy, N. M. O., Rashid, R., Sullan, R. M. A., Sun, X., &
Kraatz, H.-B. Multi-component peptide hydrogels-a systematic study incorporating
biomolecules for the exploration of diverse, tuneable biomaterials. Biomater. Sci.
8, 5601–5614 (2020).
[89] Piras, C. C., Kay, A. G., Genever, P. G., Fitremann, J. & Smith, D. K. Self assembled gel tubes, filaments and 3D-printing with in situ metal nanoparticle
formation and enhanced stem cell growth. Chem. Sci. 13, 1972–1981 (2022).
[90] Piras, C. C., Kay, A. G., Genever, P. G. & Smith, D. K. Self-assembled low molecular-weight gelator injectable microgel beads for delivery of bioactive agents.
Chem. Sci. 12, 3958–3965 (2021).
[91] Piras, C. C., Mahon, C. S., Genever, P. G. & Smith, D. K. Shaping and Patterning
Supramolecular Materials Stem Cell-Compatible Dual-Network Hybrid Gels
Loaded with Silver Nanoparticles. ACS Biomater. Sci. Eng. 8, 1829–1840 (2021).
[92] Patterson, A. K. & Smith, D. K. Two-component supramolecular hydrogel for
controlled drug release. Chem. Commun. 56, 11046–11049 (2020).
[93] Yang, L., Gan, S., Guo, Q., Zhang, H., Chen, Q., Li, H., Shi, J., & Sun, H. Stimuli controlled peptide self-assembly with secondary structure transitions and its
application in drug release. Mater. Chem. Front. 5, 4664–4671 (2021).
[94] Latxague, L., Benizri, S., Gaubert, A., Tolchard, J., Martinez, D., Morvan, E.,
Grélard, A., Saad, A., Habenstein, B., Loquet, A., & Barthélémy, P.
Bolaamphiphile-based supramolecular gels with drugs eliciting membrane effects.
J. Colloid Interface Sci. 594, 857–863 (2021).
[95] Lim, J. Y. C., Goh, S. S., Liow, S. S., Xue, K. & Loh, X. J. Molecular Gel Sorbent
Materials for Environmental Remediation and Wastewater Treatment. J. Mater.
Chem. A 7, 18759–18791 (2019).
[96] Okesola, B. O. & Smith, D. K. Applying low-molecular weight supramolecular
gelators in an environmental setting – self- assembled gels as smart materials for
pollutant removal. Chem. Soc. Rev. 45, 4226–4251 (2016).
[97] Bhardwaj, V. & Ballabh, A. Remediation of Marine Oil Spills and Water Pollution
using Low Molecular Weight Organo-Gelators. Recent Adv. Petrochemical Sci. 7,
3 (2022).
[98] Vibhute, A. M. & Sureshan, K. M. How Far Are We in Combating Marine Oil Spills
by Using Phase-Selective Organogelators? Chem Sus Chem 13, 5343–5360 (2020).
[99] Ohsedo, Y. Low-molecular-weight organogelators as functional materials for oil
spill remediation. Polym. Adv. Technol. 27, 704–711 (2016).
[100] Darban, Z., Shahabuddin, S., Gaur, R. & Ahmad, I. Hydrogel-Based Adsorbent
Material for the Effective Removal of Heavy Metals from Wastewater: A
Comprehensive Review. Gels 8, 263 (2022).
[101] Bhattacharya, S. & Krishnan-Ghosh, Y. First report of phase selective gelation of
oil from oil/water mixtures. Possible implications toward containing oil spills.
Chem. Commun. 185–186 (2001).
[102] Datta, S. & Bhattacharya, S. Multifarious facets of sugar-derived molecular gels:
molecular features, mechanisms of self-assembly and emerging applications. Chem.
Soc. Rev. 44, 5596–5637 (2015).
[103] Vibhute, A. M., Muvvala, V. & Sureshan, K. M. A Sugar-Based Gelator for Marine
Oil-Spill Recovery. Angew. Chemie – Int. Ed. 55, 7782–7785 (2016).
[104] Soundarajan, K. & Mohan Das, T. Sugar-benzohydrazide based phase selective
gelators for marine oil spill recovery and removal of dye from polluted water.
Carbohydr. Res. 481, 60–66 (2019).
[105] Zhuan, C., Li, Y., Yuan, X., Zhao, J. & Hou, X. A sorbitol-based phase-selective
organogelator for crude oil spills treatment. J. Appl. Polym. Sci. 136, 1–8 (2019).
[106] Basu, N., Chakraborty, A. & Ghosh, R. Carbohydrate derived organogelators and
the corresponding functional gels developed in recent time. Gels 4, (2018).
[107] Nandi, M., Maiti, B., Banerjee, S. & De, P. Hydrogen bonding driven self-assembly
of side-chain amino acid and fatty acid appended poly(methacrylate)s: Gelation and
application in oil spill recovery. J. Polym. Sci. Part A Polym. Chem. 57, 511–521
(2019).
[108] Zhang, Y., Luan, T., Cheng, Q., An, W., Tang, R., Xing, P., & Hao, A. Highly
Efficient Recovery of Oils in Water via Serine-Based Organogelators. Langmuir
35, 4133–4139 (2019).
[109] Li, Z., Luo, Z., Zhou, J., Ye, Z., Ou, G., Huo, Y., Yuan, L., & Zeng, H.
Monopeptide-Based Powder Gelators for Instant Phase-Selective Gelation of
Aprotic Aromatics and for Toxic Dye Removal. Langmuir 36, 9090–9098 (2020).
[110] Yang, Y. S., Yang, C., Zhang, Y. P., Niu, W. Y. & Xue, J. J. Synthesis and self assembly of
coumarin-chalcone derivatives organogels. Colloids Interface Sci.
Commun. 41, 1–7 (2021).
[111] Pang, S., Chen, H., Jiang, Z., Song, B., Xie, D., Zhai, Z., Cui, Z., Gu, Y.,
& Pei, X. Water-in-Oil Emulsion Gels Stabilized by a Low-Molecular Weight
Organogelator Derived from Dehydroabietic Acid. Langmuir (2022)
DOI: 10.1021/acs.langmuir.2c00280.
[112] Bhattacharya, S., Patra, D. & Shunmugam, R. Triphenylphosphonium conjugated
quaternary ammonium based gel: synthesis and potential application in the efficient
removal of toxic acid orange 7 dye from aqueous solution. New J. Chem. 44, 14989–14999 (2020).
[113] Raza, R., Panja, A. & Ghosh, K. Diaminomalenonitrile-functionalized gelators in
F-/CN-sensing, phase-selective gelation, oil spill recovery and dye removal from
water. New J. Chem. 44, 10275–10285 (2020).
[114] Panja, A., Raza, R. & Ghosh, K. Cholesterol-Coupled Diazine-Phenol Gelator:
Cyanide Sensing, Phase-Selective Gelation in Oil Spill Recovery and Dye
Adsorption. Chemistry Select 5, 11874–11881 (2020).
[115] Liu, D., Dai, S., Wang, L., Liu, Y. & Lu, H. A tertiary amine group-based
organogelator with pH-trigger recyclable property. New J. Chem. 45, 7210–7216
(2021).
[116] Fan, K., Wang, X., Wang, X., Yang, H., Han, G., Zhou, L., & Fang, S. One-step synthesized D-gluconic acetal-based supramolecular organogelators with effective
phase-selective gelation. RSC Adv. 10, 37080–37085 (2020).
[117] Bhardwaj, V. & Ballabh, A. A series of multifunctional pivalamide based Low
Molecular Mass Gelators (LMOGs) with potential applications in oil-spill
remediation and toxic dye removal. Colloids Surfaces A Physicochem. Eng. Asp.
632, 127813 (2022).
[118] Li, L., Chen, J., Wang, Z., Xie, L., Feng, C., He, G., Hu, H., Sun, R., & Zhu, H. A
supramolecular gel made from an azobenzene-based phenylalanine derivative:
synthesis, self-assembly, and dye adsorption. Colloids Surfaces A Physicochem.
Eng. Asp. 628, 127289 (2021).
[119] Rizzo, C., Andrews, J. L., Steed, J. W. & D’Anna, F. Carbohydrate-supramolecular
gels: Adsorbents for chromium(VI) removal from wastewater. J. Colloid Interface
Sci. 548, 184–196 (2019).
We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!