Chapter 2: Lightweight Gypsum: Methods of Preparation and Use

$39.50

A. Vimmrová, PhD
Department of Building Materials and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic

Part of the book: Gypsum: Sources, Uses and Properties

Abstract

The paper deals with the methods of preparation and utilization of gypsum based lightweight materials. Indirect method means the lightening by the lightweight fillers. Lightweight fillers suitable for gypsum (inorganic, organic, waste) are described. In directly lightened materials the pores are incorporated directly into the gypsum paste either by direct gas releasing chemical reaction between the components or mechanically by the help of surface active agents. Reactions suitable for chemical lightening of gypsum are described. Surface active agents can be added directly into the gypsum slurry and the mixture is mixed at high speed or foam is prepared in advance in special device and added into the gypsum slurry. Types of surface active substances are listed. Bulk density, compressive strength and thermal conductivity of materials prepared by the different methods are summarized in tables. The advantages and disadvantages of particular methods are given. Potential utilization of gypsum lightweight materials is suggested.

Keywords: lightweight gypsum, lightening methods, lightweight fillers, foaming, SAA


References


Adamopoulos, S., Foti, D., Voulgaridis, E., and Passialis, C. 2015. Manufacturing and Properties of Gypsum-Based Products with Recovered Wood and Rubber Materials. BioResources, 10(3).
DOI: 10.15376/biores.10.3.5573-5585.
Akthar, F., and Evans, J. 2010. High porosity (>90%) cementitious foams. Cement and Concrete Research, 40(2), 352-358. DOI: 10.1016/j.cemconres.2009.10.012.
Baux, C., Lanos, C., and Phelipot-Mardelé, A. 2011. Mineral foams with improved performances. Annales du Bâtiment et des travaux publics, 2011 (1), 53-57.
Bayer AG., 1977. Production of foamed gypsum moldings. Patent US404382.
Bazelová, Z., Pach, L., and Lokaj, J. 2010. The Effect of Surface Active Substance Concentration on the Properties of Foamed and Non-foamed Gypsum. Ceramics – Silikáty, 54(4), 379-385.
Bicer, A., and Kar, F. 2017. Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Thermal Science and Engineering Progress, 1, 59-65. https://doi.org/10.1016/j.tsep.2017.02.008.
Braiek, A., Karkri, M., Adili, A., Ibos, L., and Ben Nasrallah, S. 2017. Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy and Buildings, 140, 268-279. https://doi. org/10.1016/j.enbuild.2017.02.001.
Brencis, R., Skujans, J., Iljins, U., Ziemelis, I., and Osits, N. 2011. Research on Foam Gypsum with Hemp Fibrous Reinforcement. In: 14th International Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. Milano, Italy: Aidic Servizi Srl, pp. 159-164. DOI: 10.3303/ CET1125027.
Capasso, I., and Iucolano, F. 2020. Production of lightweight gypsum using a vegetal protein as foaming agent. Materials and Structures, 53(2), Article 35. https://doi. org/10.1617/s11527-020-01469-w.
Capasso, I., Pappalardo, L., Romano, R. A., and Iucolano, F. 2021. Foamed gypsum for multipurpose applications in building. Construction and Building Materials, 307, Article 124948. https://doi.org/10.1016/j.conbuildmat.2021.124948.
Chikhi, M., Agoudjil, B., Boudenne, A., and Gherabli, A. 2013. Experimental investigation of new biocomposite with low cost for thermal insulation. Energy and Buildings, 66, 267-273.
DOI: 10.1016/j.enbuild.2013.07.019.
Chikhi, M. 2016. Young’s modulus and thermophysical performances of bio-sourced materials based on date palm fibers. Energy and Buildings, 129, 589-597. https://doi.org/10.1016/j.enbuild.2016.08.034.
Çolak, A. 2000. Density and strength characteristics of foamed gypsum. Cement and Concrete Composites, 22(3), 193-200. doi: 10.1016/S0958-9465(00)00008-1.
de Oliveira, K. A., Oliveira, C. A. B., and Molina, J. C. 2021. Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum. Materiales De Construccion, 71(341), Article e242. https://doi.org/10.3989/mc.2021.07520.
Demir, I., and Serhat Baspinar, M. 2008. Effect of silica fume and expanded perlite addition on the technical properties of the fly ash–lime–gypsum mixture. Construction and Building Materials, 22(6), 1299-1304. DOI: 10.1016/j.conbuildmat. 2007.01.011.
Dima, C., Badanoiu, A., Cirstea, S., Nicoara, A. I., and Stoleriu, S. 2020. Lightweight Gypsum Materials with Potential Use for Thermal Insulations. Materials, 13(23), Article 5454. https://doi.org/10.3390/ma13235454.
Doleželová, M., Krejsová, J., and Vimmrová, A. 2017. Lightweight gypsum based materials: Methods of preparation and utilization. International Journal of Sustainable Development and Planning 12(2), 326-335.DOI: 10.2495/SDP-V12-N2-326-335.
Dolezelova, M., Scheinherrova, L., Krejsova, J., Keppert, M., Cerny, R., and Vimmrova, A. 2021. Investigation of gypsum composites with different lightweight fillers. Construction and Building Materials, 297, Article 123791. https://doi.org/10. 1016/j.conbuildmat.2021.123791.
Durgun, M. Y. 2020. Effect of wetting-drying cycles on gypsum plasters containing ground basaltic pumice and polypropylene fibers. Journal of Building Engineering, 32, Article 101801. https://doi.org/10.1016/j.jobe.2020.101801.
Gamarra, C. 1933. Method of making aerated gypsum and resulting product. Patent US1912702.
García Santos, A. 2009. Escayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandido. [Plaster reinforced with polypropylene fibers and lightened with expanded polystyrene beads] Materiales de Construcción, 59(293). DOI: 10.3989/mc.2009.41107.
Gencel, O., del Coz Diaz, J., Sutcu, M., Koksal, F., Alvarez Rabanal, F., Martinez-Barrera, G., and Brostow, W. 2014. Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy and Buildings, 70, 135-144. DOI: 10.1016/j.enbuild.2013.11.047.
Gutiérrez-González, S., Gadea, J., Rodríguez, A., Blanco-Varela, M., and Calderón, V. 2012a. Compatibility between gypsum and polyamide powder waste to produce lightweight plaster with enhanced thermal properties. Construction and Building Materials, 34, 179-185. DOI: 10.1016/j.conbuildmat.2012.02.061.
Gutiérrez-González, S., Gadea, J., Rodríguez, A., Junco, C., and Calderón, V. 2012b. Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes. Construction and Building Materials, 28(1), 653-658. DOI: 10.1016/j.conbuildmat.2011.10.055.
Hernández-Olivares, F., Bollati, M., del Rio, M. and Parga-Landa, B. 1999. Development of cork–gypsum composites for building applications. Construction and Building Materials, 13(4), 179-18.
DOI: 10.1016/S0950-0618(99)00021-5.
Herrero, S., Mayor, P., and Hernández-Olivares, F. 2013. Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster–rubber mortars. Materials & Design, 47, 633-642. DOI: 10.1016/j.matdes.2012.12.063.
Iucolano, F., Campanile, A., Caputo, D., and Liguori, B. 2021. Sustainable Management of Autoclaved Aerated Concrete Wastes in Gypsum Composites. Sustainability, 13(7), Article 3961. https://doi.org/10.3390/su13073961.
Jiang, J., Lu, Z. Y., Li, J., Fan, Y., and Niu, Y. H. 2019. Preparation and hardened properties of lightweight gypsum plaster based on pre-swelled bentonite. Construction and Building Materials, 215, 360-370. https://doi.org/10.1016/j.conbuildmat.2019.04.181.
Jiménez Rivero, A., de Guzmán Báez, A., and García Navarro, J. 2014. New composite gypsum plaster – ground waste rubber coming from pipe foam insulation. Construction and Building.
DOI: 10.1016/j.conbuildmat.2014.01.027.
Jin, Z. H., Ma, B. G., Su, Y., Qi, H. H., Lu, W. D., and Zhang, T. 2021. Preparation of eco-friendly lightweight gypsum: Use of beta-hemihydrate phosphogypsum and expanded polystyrene particles. Construction and Building Materials, 297, Article 123837. https://doi.org/10.1016/j.conbuildmat.2021.123837.
Kuqo, A., and Mai, C. 2021. Mechanical properties of lightweight gypsum composites comprised of seagrass Posidonia oceanica and pine (Pinus sylvestris) wood fibers. Construction and Building Materials, 282, Article 122714. https://doi.org/10. 1016/j.conbuildmat.2021.122714.
Lozano-Diez, R. V., Lopez-Zaldivar, O., Herrero-del-Cura, S., Mayor-Lobo, P. L., and Hernandez-Olivares, F. 2021. Mechanical Behavior of Plaster Composites Based on Rubber Particles from End-of-Life Tires Reinforced with Carbon Fibers. Materials, 14(14), Article 3979. https://doi.org/10.3390/ma14143979.
Merino, M. D., Astorqui, J. S. C., Saez, P. V., Jimenez, R. S., and Cortina, M. G. 2018. Eco plaster mortars with addition of waste for high hardness coatings. Construction and Building Materials, 158, 649-656. https://doi.org/10.1016/j.conbuildmat.2017.10.037.
Merino, M. D., Saez, P. V., Longobardi, I., Astorqui, J. S. C., and Porras-Amores, C. 2019. Redesigning lightweight gypsum with mixes of polystyrene waste from construction and demolition waste. Journal of Cleaner Production, 220, 144-151. https://doi.org/10.1016/j.jclepro.2019.02.132.
Morales-Conde, M., Rodríguez-Liñán, C., and Pedreño-Rojas, M. 2016. Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works. Construction and Building Materials, 114, 6-14. DOI: 10.1016/j.conbuildmat.2016.03.137.
Natalio, F., Corrales, T. P., Feldman, Y., Lew, B., and Graber, E. R. 2020. Sustainable Lightweight Biochar-Based Composites with Electromagnetic Shielding Properties. Acs Omega, 5(50), 32490-32497. https://doi.org/10.1021/acsomega.0c04639.
Pralat, K., Grabowski, M., and Majewski, L. 2020. Application of experimental setup for the thermal conductivity measurement for searching novel environmental material solutions used in construction. Cement Wapno Beton, 25(6), 505-513. https://doi.org/ 10.32047/cwb.2020.25.6.7.
Rubio-Avalos, J., Manzano-Ramírez, A., Yañez-Limón, J., Contreras-García, M., Alonso-Guzmán, E., and González-Hernández, J. 2005. Development and characterization of an inorganic foam obtained by using sodium bicarbonate as a gas generator. Construction and Building Materials, 19(7), pp. 543-549. DOI: 10.1016/j. conbuildmat.2004.12.001.
Sair, S., Mandili, B., Taqi, M., and El Bouari, A. 2019. Development of a new eco-friendly composite material based on gypsum reinforced with a mixture of cork fibre and cardboard waste for building thermal insulation. Composites Communications, 16, 20-24. https://doi.org/10.1016/j.coco.2019.08.010.
San-Antonio-González, A., Del Río Merino, M., Viñas Arrebola, C., and Villoria-Sáez, P. 2015. Lightweight material made with gypsum and extruded polystyrene waste with enhanced thermal behaviour. Construction and Building Materials, 93, 57-63. DOI: 10.1016/j.conbuildmat.2015.05.040.
Sanz-Pont, D., Sanz-Arauz, D., Bedoya-Frutos, C., Flatt, R. and López-Andrés, S. 2015. Anhydrite/aerogel composites for thermal insulation. Materials and Structures, 49(9), 3647-3661. DOI: 10.1617/s11527-015-0746-8.
Sayil, B., and Gürdal, E. 1999. The Physical Properties Of Polystyrene Aggregated Gypsum Blocks. In: 8th International Conference on Durability of Building Materials and Components (8dbmc). Vancouver: National Research Council Canada, 496-504.
Selamat, M. E., Hashim, R., Sulaiman, O., Kassim, M. H. M., Saharudin, N. I., and Taiwo, O. F. A. 2019. Comparative study of oil palm trunk and rice husk as fillers in gypsum composite for building material. Construction and Building Materials, 197, 526-532. https://doi.org/10.1016/j.conbuildmat.2018.11.003.
Serhat Başpınar, M., and Kahraman, E. 2011. Modifications in the properties of gypsum construction element via addition of expanded macroporous silica granules. Construction and Building Materials, 25(8), 3327-3333. DOI: 10.1016/j. conbuildmat.2011.03.022.
Sinka, M., Sahmenko, G., Korjakins, A., Radina, L., and Bajare, D. 2015. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties. IOP Conference Series-Materials Science and Engineering. 2nd International Conference on Innovative Materials, Structures and Technologies (IMST), Riga, Latvia.
Skujans, J., Vulans, A., Iljins, U., and Aboltins, A. 2007. Measurements of heat transfer of multi-layered wall construction with foam gypsum. Applied Thermal Engineering, 27(7), 1219-1224.
DOI: 10.1016/j.applthermaleng.2006.02.047.
Tian, T., Yan, Y., Hu, Z., Xu, Y., Chen, Y., and Shi, J. 2016. Utilization of original phosphogypsum for the preparation of foam concrete. Construction and Building Materials, 115, 143-152.
DOI: 10.1016/j.conbuildmat.2016.04.028.
Umponpanarat, P., and Wansom, S. 2015. Thermal conductivity and strength of foamed gypsum formulated using aluminum sulfate and sodium bicarbonate as gas-producing additives. Materials and Structures, 49(4), 1115-1126. DOI: 10.1617/ s11527-015-0562-1.
Vimmrová, A., Keppert, M., Svoboda, L., and Černý, R. 2011. Lightweight gypsum composites: Design strategies for multi-functionality. Cement and Concrete Composites, 33(1), 84-89. doi: 10.1016/j.cemconcomp.2010.09.011.
Vimmrová, A., Nazmunnahar, M., and Černý, R. 2014. Lightweight gypsum-based materials prepared with aluminum powder as foaming agent. Cement-Wapno-Beton, 19(5), 299-307.
Wang, Q., Cui, Y., and Xue, J. F. 2020. Study on the improvement of the waterproof and mechanical properties of hemihydrate phosphogypsum-based foam insulation materials. Construction and Building Materials, 230, Article 117014. https:// doi.org/10.1016/j.conbuildmat.2019.117014.
Yang, L., Yan, Y., and Hu, Z. 2013. Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete. Construction and Building Materials, 44, 600-606. doi: 10.1016/j.conbuildmat.2013.03.070.
Zheng, B. 2013. Titanium gypsum foamed building block and preparation method thereof. Patent CN103467056.
Zhong, D. Q., Wang, J. C., Hou, G. H., Wang, L. M., Wu, Q., and Lu, B. 2021. Performance and Nanostructure Simulation of Phosphogypsum Modified by Sodium Carbonate and Alum. Materials, 14(19), Article 5830. https://doi.org/10.3390/ ma14195830.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!