Chapter 2. Challenges for Biorefineries in Latin America: A Prospective Analysis

$39.50

María J. Lozano1, Nayda P. Arias Duque1, Jairo Salcedo Mendoza1 and Valentina Aristizábal-Marulanda1,2
1
Facultad de Ingeniería, Grupo Procesos Agroindustriales y Desarrollo Sostenible (PADES), Universidad de Sucre, Sincelejo, Colombia
2Facultad de Tecnologías, Escuela de Tecnología Química, Grupo Desarrollo de Procesos Químicos, Universidad Tecnológica de Pereira, Pereira, Colombia

Part of the book: The Future of Biorefineries

Abstract

Biorefineries play an essential role in sustainability and the biobased economy. Some of the challenge related to policy regulation, new process, and raw materials needs structural change in the value chain, such as logistics, discovering new raw materials, and overcoming troubles that arose from pandemic SARS Cov 2. It was evident the need to have an auto sustainable economy, the active participation of quadruple helix efforts to drive new developments and reach new milestones in technological maturity. Government efforts have facilitated the legal framework for the operation of Research Centers with social projection and have allowed, for example, in Costa Rica, to join the developments of nanotechnology to one of the lines of biorefineries where pineapple waste has been taken advantage of it. On the other hand, advances in this sense in Uruguay and Chile have allowed substantial advances in using residues from the meat industry and the production of polyhydroxyalkanoates, respectively. Undoubtedly, Brazil is experiencing an important boom in the Latin American economy given its long history in the use of agricultural residues and in obtaining biofuels. Colombia is positioned as an important international actor due to its contributions, the adoption of the 2030 bioeconomy agenda, and the governmental impulse through the 2030 bioeconomy mission for Colombia, which requires the cohesion of the actors from the different industrial sectors, academia, the state, and civil society. In this sense, initiatives developed in post-conflict areas in Colombia for the reconstruction of the social fabric and to provide new energy sources and biobased products from organic agricultural and agro-industrial residues in the Colombian Caribbean are also presented. With the aim of performing a prospective analysis of the state of biorefineries in Latin America, this work was divided into the following section.


References


Abdul Manaf, Shareena Fairuz, Jamaliah Md Jahim, Shuhaida Harun, and Abdullah Amru
Indera Luthfi. 2018. “Fractionation of oil palm fronds (OPF) hemicellulose using
dilute nitric acid for fermentative production of xylitol.” Industrial Crops and
Products 115:6-15. doi: 10.1016/j.indcrop.2018.01.067.
Abdulkhani, Ali, Meraj Siahrang, Zahra Echresh Zadeh, Sahab Hedjazi, Sanaz Torkameh,
and Mehdi Faezipour. 2021. “Direct catalytic conversion of bagasse fibers to furan
building blocks in organic and ionic solvents.” Biomass Conversion and Biorefinery.
doi: 10.1007/s13399-021-01592-w.
Ahmad, Farah B., M.A. Kalam, Zhanying Zhang, and H.H. Masjuki. 2022. “Sustainable
production of furan-based oxygenated fuel additives from pentose-rich biomass
residues.” Energy Conversion and Management: X 14:100222.
DOI: 10.1016/j.ecmx.2022.100222.
Alexis Michael Bazzanella, Florian Ausfelder, and DECHEMA Gesellschaft für
Chemische Technik und Biotechnologie e.V. 2017. [DECHEMA Society for
Chemical Engineering and Biotechnology e.V. 2017.]. Low carbon energy and
90 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
feedstock for the European chemical industry.
Edited by The European Chemical Industry Council.
Ambaye, T. G., M. Vaccari, E. D. van Hullebusch, A. Amrane, and S. Rtimi. 2021.
“Mechanisms and adsorption capacities of biochar for the removal of organic and
inorganic pollutants from industrial wastewater.” International Journal of
Environmental Science and Technology 18 (10):3273-3294.
DOI: 10.1007/s13762-020-03060-w.
Andler, R., C. Valdés, V. Urtuvia, C. Andreeßen, and A. Díaz-Barrera. 2021.
“Fruit residues as a sustainable feedstock for the production of bacterial
polyhydroxyalkanoates.” Journal of Cleaner Production 307:127236. DOI:
https://doi.org/10.1016/j.jclepro.2021.127236.
Aristizábal-Marulanda Valentina., Carlos Ariel. Cardona- Alzate, and Mariano. Martín.
2019. “An integral methodological approach for biorefineries design: Study case of
Colombian coffee cut-stems.” Computers & Chemical Engineering 126:35-53. doi:
https://doi.org/10.1016/j.compchemeng.2019.03.038.
Aristizábal-Marulanda, Valentina, Juan Camilo Solarte-Toro, and Carlos Ariel Cardona
Alzate. 2021. “Study of biorefineries based on experimental data: production of
bioethanol, biogas, syngas, and electricity using coffee-cut stems as raw material.”
Environmental Science and Pollution Research 28 (19):24590-24604. doi:
10.1007/s11356-020-09804-y.
Aristizábal-Marulanda, Valentina., Christian D. Botero-Gutierrez, and Carlos A.
Cardona Alzate. 2019. “Chapter 4 – Thermochemical, Biological, Biochemical, and Hybrid
Conversion Methods of Bio-derived Molecules into Renewable Fuels.” In Advanced
Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts, edited by
Majid Hosseini, 59-81. Woodhead Publishing.
Ávila Lara, Abimael Iván. 2019. “Evaluación de bagazo de Agave tequilana Weber
variedad azul y de Opuntia ficus indica en pretratamientos químicos y enzimáticos
para su aplicación en la producción de ácido succínico.” [Evaluation of bagasse from
Agave tequilana Weber blue variety and from Opuntia ficus indica in chemical and
enzymatic pretreatments for its application in the production of succinic acid].
Maestría Maestría, Maestría en Ciencias con Orientación en Procesos Sustentables,
Universidad Autónoma de Nuevo León. [Master’s Degree, Master’s Degree in
Sciences with Orientation in Sustainable Processes,
Autonomous University of Nuevo León].
Awasthi, Mukesh Kumar, Raveendran Sindhu, Ranjna Sirohi, Vinod Kumar, Vivek
Ahluwalia, Parameswaran Binod, Ankita Juneja, Deepak Kumar, Binghua Yan,
Surendra Sarsaiya, Zengqiang Zhang, Ashok Pandey, and Mohammad J. Taherzadeh.
2022. “Agricultural waste biorefinery development towards circular bioeconomy.”
Renewable and Sustainable Energy Reviews 158:112122.
doi: 10.1016/j.rser.2022.112122.
Azlan, Nadiah Syafiqah Mohd, Chiew Lin Yap, Suyin Gan, and Mohd Basyaruddin Abdul
Rahman. 2022. “Recent advances in the conversion of lignocellulosic biomass and its
degraded products to levulinic acid: A synergy of Brønsted-Lowry acid and Lewis
acid.” Industrial Crops and Products 181:114778.
doi: https://doi.org/10.1016/j.indcrop.2022.114778.
Challenges for Biorefineries in Latin America: A Prospective Analysis 91
Barton, Nelson R., Anthony P. Burgard, Mark J. Burk, Jason S. Crater, Robin E. Osterhout,
Priti Pharkya, Brian A. Steer, Jun Sun, John D. Trawick, Stephen J. Van Dien, Tae
Hoon Yang, and Harry Yim. 2015. “An integrated biotechnology platform for
developing sustainable chemical processes.” Journal of Industrial Microbiology and
Biotechnology 42:349-360. doi: 10.1007/s10295-014-1541-1.
Beatriz Briano Col. 2021. Valorizacion de residuos en la industria carnica bovina. [Waste
recovery in the bovine meat industry]. https://www.cyted.org/sites/default/
files/c19-valorizacion_de_residuos_industria_carnica-beatriz_briano-18-oct.pdf.CYTED.
Becker, Judith, Anna Lange, Jonathan Fabarius, and Christoph Wittmann. 2015. “Top value
platform chemicals: Bio-based production of organic acids.” Current Opinion in
Biotechnology 36:168-175. doi: 10.1016/J.COPBIO.2015.08.022.
Bello, Sara, Carmen Ríos, Gumersindo Feijoo, and María Teresa Moreira. 2018.
“Comparative evaluation of lignocellulosic biorefinery scenarios under a life-cycle
assessment approach.” Biofuels, Bioproducts and Biorefining 12 (6):1047-1064. doi:
https://doi.org/10.1002/bbb.1921.
Bello, Sara, Noelia Pérez, Jan Kiebist, Katrin Scheibner, María Isabel Sánchez Ruiz, Ana
Serrano, Ángel T. Martínez, Gumersindo Feijoo, and Maria Teresa Moreira. 2021.
“Early-stage sustainability assessment of enzyme production in the framework of
lignocellulosic biorefinery.” Journal of Cleaner Production 285:125461. doi:
https://doi.org/10.1016/j.jclepro.2020.125461.
Benites-Lazaro, L. L., L. L. Giatti, W. C. Sousa Junior, and A. Giarolla. 2020.
“Land-water food nexus of biofuels: Discourse and policy debates in Brazil.” Environmental
Development 33:100491. doi: https://doi.org/10.1016/j.envdev.2019.100491.
Bhatia, Shashi Kant, Sujit Sadashiv Jagtap, Ashwini Ashok Bedekar, Ravi Kant Bhatia,
Anil Kumar Patel, Deepak Pant, J. Rajesh Banu, Christopher V. Rao, Yun Gon Kim,
and Yung Hun Yang. 2020. “Recent developments in pretreatment technologies on
lignocellulosic biomass: Effect of key parameters, technological improvements, and
challenges.” Bioresource Technology 300. doi: 10.1016/J.BIORTECH.2019.122724.
Bio Costa Rica. 2022. “Estrategia Nacional de Bioeconomía Costa Rica 2030-2050.
[National Bioeconomy Strategy Costa Rica 2030-2050]. https://www.chmcostarica.
go.cr/recursos/documentos-y-publicaciones/estrategia-nacional-de-bioeconomia costa-rica-2020-2030.
accesed on july 2022.” https://www.chmcostarica.go.cr/
recursos/documentos-y-publicaciones/estrategia-nacional-de-bioeconomia-costa rica-2020-2030.
Bioenergy., IEA. 2022. “Renewables.” Renewables, including solar, wind, hydro, biofuels
and others, are at the centre of the transition to a less carbon-intensive and more
sustainable energy system.
BIOFIN. 2021. “Estrategia de Bioeconomía de BIOFIN México. [BIOFIN Mexico Bioeconomy Strategy]. https://www.biofin.org/knowledge-product/estrategia-de bioeconomia-de-biofin-mexico.
accessed july 2022.”
Birgit Kamm, and Michael Kamm. 2007. “International biorefinery systems.” Pure and
Applied Chemsitry 79 (11):1983-1997. doi: doi:10.1351/pac200779111983.
92 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
Borges, E. R., and N. Pereira Jr. 2011. “Succinic acid production from sugarcane bagasse
hemicellulose hydrolysate by Actinobacillus succinogenes.” Journal of Industrial
Microbiology and Biotechnology 38:1001-1011. doi: 10.1007/s10295-010-0874-7.
Bozell, Joseph J., and Gene R. Petersen. 2010. “Technology development for the production
of biobased products from biorefinery carbohydrates—the US Department of
Energy’s “top 10” revisited.” Green Chemistry 12:539-55. doi: 10.1039/B922014C.
Bragatto, J., F. Segato, and F.M Squina. 2013. “Production of xylooligosaccharides (XOS)
from delignified sugarcane bagasse by peroxide-HAc process using recombinant
xylanase from Bacillus subtilis.” Industrial Crops and Products 51:123-129.
doi: 10.1016/j.indcrop.2013.08.062.
Brownlee, Harold J., and Carl S. Miner. 1948. “Industrial Development of Furfural.”
Industrial & Engineering Chemistry 40 (2):201-204. doi: 10.1021/ie50458a005.
Bundhoo, M., R. Mohee, and M. Hassan. 2015. “Effects of pre-treatment technologies on
dark fermentative biohydrogen production: A review.” Journal of Environmental
Management 157:20-48. doi: https://doi.org/10.1016/j.jenvman.2015.04.006.
Bustamante, Daniel, Marta Tortajada, Daniel Ramón, and Antonia Rojas. 2019.
“Production of D-Lactic Acid by the Fermentation of Orange Peel Waste Hydrolysate
by Lactic Acid Bacteria.” Fermentation, 6(1), 1.doi: 10.3390/fermentation6010001.
Caderby, E., S. Baumberger, W. Hoareau, C. Fargues, M. Decloux, and M. Maillard. 2013.
“Sugar Cane Stillage: A Potential Source of Natural Antioxidants.” Journal of
Agricultural and Food Chemistry 61. doi: 10.1021/jf4039474.
Calvo, S., N. P. Arias, O. Giraldo, A. Rosales-Rivera, and O. Moscoso. 2012. “Thermal
and magnetic behavior of Angustifolia Kunth bamboo fibers covered with Fe3O4
particles.” Physica B: Condensed Matter 407 (16):3267-3270. doi: https://doi.org/
10.1016/j.physb.2011.12.083.
Carbonell, Sergio A. M., Luis Augusto Barbosa Cortez, Luis F. C. Madi, Lilian C.
Anefalos, Ricardo Baldassin Junior, and Rodrigo L. V. Leal. 2021. “Bioeconomy in
Brazil: Opportunities and guidelines for research and public policy for regional
development.” Biofuels, Bioproducts and Biorefining 15 (6):1675-1695. doi:
https://doi.org/10.1002/bbb.2263.
Castillo Martinez, Fabio Andres, Eduardo Marcos Balciunas, José Manuel Salgado, José
Manuel Domínguez González, Attilio Converti, and Ricardo Pinheiro de Souza
Oliveira. 2013. “Lactic acid properties, applications and production: A review.”
Trends in Food Science and Technology 30:70-83. doi: 10.1016/J.TIFS.2012.11.007.
Cervantes-Álvarez, F., J. J. Reyes-Salgado, V. Dossetti, and J. L. Carrillo. 2014. “Thermal
properties of composite materials with a complex fractal structure.” Journal of Physics
D: Applied Physics 47 (23):235303. doi: 10.1088/0022-3727/47/23/235303.
Chavalparit, Orathai, and Maneerat Ongwandee. 2009. “Clean technology for the tapioca
starch industry in Thailand.” Journal of Cleaner Production 17 (2):105-110. doi:
https://doi.org/10.1016/j.jclepro.2008.03.001.
Chen, Chunlin, Lingchen Wang, Bin Zhu, Zhenqiang Zhou, Soliman I. El-Hout, Jie Yang,
and Jian Zhang. 2021. “2,5-Furandicarboxylic acid production via catalytic oxidation
of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism.” Journal
of Energy Chemistry 54:528-554. doi: 10.1016/j.jechem.2020.05.068.
Challenges for Biorefineries in Latin America: A Prospective Analysis 93
Chen, Season S., Thawatchai Maneerung, Daniel C.W. Tsang, Yong Sik Ok, and Chi-Hwa
Wang. 2017. “Valorization of biomass to hydroxymethylfurfural, levulinic acid, and
fatty acid methyl ester by heterogeneous catalysts.” Chemical Engineering Journal
328:246-273. doi: 10.1016/j.cej.2017.07.020.
Chennouf, Nawal, Boudjemma Agoudjil, Abderrahim Boudenne, Karim Benzarti, and
Fathi Bouras. 2018. “Hygrothermal characterization of a new bio-based construction
material: Concrete reinforced with date palm fibers.” Construction and Building
Materials 192:348-356. doi: 10.1016/j.conbuildmat.2018.10.089.
Cherubini, Francesco, Gerfried Jungmeier, Maria Wellisch, Thomas Willke, Ioannis
Skiadas, René Van Ree, and Ed de Jong. 2009. “Toward a common classification
approach for biorefinery systems.” Biofuels, Bioproducts and Biorefining, 3(5), 534–
546. doi: https://doi.org/10.1002/bbb.172.
Choi, Sol, Chan Woo Song, Jae Ho Shin, and Sang Yup Lee. 2015. “Biorefineries for the
production of top building block chemicals and their derivatives.” Metabolic
Engineering 28:223-239. doi: 10.1016/J.YMBEN.2014.12.007.
Chum, Helena L., Ethan Warner, Joaquim E.A. Seabra, and Isaias C. Macedo. 2014. “A
comparison of commercial ethanol production systems from Brazilian sugarcane and
US corn.” Biofuels, Bioproducts and Biorefining 8:205-223. doi: 10.1002/bbb.1448.
Chung, Millicent Rosette Wan Yi, Inn Shi Tan, Henry Chee Yew Foo, Man Kee Lam, and
Steven Lim. 2021. “Potential of macroalgae-based biorefinery for lactic acid
production from exergy aspect.” Biomass Conversion and Biorefinery. doi:
10.1007/S13399-021-01375-3.
Commission to the Gothenburg European Council. 2005. “Strategy for sustainable
development.” accessed june 20. https://eur-lex.europa.eu/legal-content/EN/TXT/
HTML/?uri=URISERV:l28117&from=DE.
CONPES 2834. 1996. CONPES 2834. Política de Bosques. [Forest Policy].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/2834.pdf.
CONPES 3510. 2008. CONPES 3510. Lineamientos de política para promover la
producción sostenible de biocombustibles en Colombia. [Policy guidelines to promote
the sustainable production of biofuels in Colombia]. https://colaboracion.dnp.gov.
co/CDT/Conpes/Econ%C3%B3micos/3510.pdf.
CONPES 3527. 2008. CONPES 3527. Política Nacional de Competitividad y
Productividad Política Nacional de Competitividad y Productividad. [National
Competitiveness and Productivity Policy National Competitiveness and Productivity
Policy]. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3527.pdf.
CONPES 3533. 2008. CONPES 3533. Bases de un Plan de Acción para la Adecuación del
Sistema de Propiedad Intelectual a la Competitividad y Productividad Nacional 2008-
2010. [Bases of an Action Plan for the Adaptation of the Intellectual Property System
to National Competitiveness and Productivity 2008-2010]. https://colaboracion.dnp.
gov.co/CDT/Conpes/Econ%C3%B3micos/3533.pdf.
CONPES 3582. 2009. CONPES 3582. Política Nacional de Ciencia, Tecnología e
Innovación. [National Science, Technology and Innovation Policy].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3582.pdf.
94 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
CONPES 3678. 2010. CONPES 3678 Política de Transformación Productiva: Un Modelo
de Desarrollo Sectorial para Colombia. [Productive Transformation Policy:
A Sectoral Development Model for Colombia]
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3678.pdf.
CONPES 3697. 2011. CONPES 3697. Política para el Desarrollo Comercial de la
Biotecnología a Partir del Uso Sostenible de la Biodiversidad. [Policy for the
Commercial Development of Biotechnology from the Sustainable Use of Biodiversity].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3697.pdf.
CONPES 3700. 2011. CONPES 3700. Estrategia institucional para la articulación de
políticas y acciones en materia de cambio climático en Colombia. [Institutional
strategy for the articulation of policies and actions on climate change in Colombia].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3700.pdf.
CONPES 3834. 2015. CONPES 3834. Lineamientos de política para estimular la inversión
privada en ciencia, tecnología e innovación a través de deducciones tributarias.
[Policy guidelines to stimulate private investment in science, technology and
innovation through tax deductions].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3834.pdf.
CONPES 3866. 2016. CONPES 3866. Política Nacional de Desarrollo Productivo.
[National Productive Development Policy]. https://colaboracion.dnp.gov.co/CDT/
Conpes/Econ%C3%B3micos/3866.pdf.
CONPES 3874. 2016. CONPES 3874. Política Nacional para la Gestión Integral de
Residuos Sólidos. [National Policy for the Integral Management of Solid Waste].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3874.pdf.
CONPES 3892. 2017. CONPES 3892. Actualización del Documento CONPES 3834
Lineamientos de política para estimular la inversión privada en ciencia, tecnología e
innovación a través de deducciones tributarias. [Policy guidelines to stimulate private
investment in science, technology and innovation through tax deductions].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3892.pdf.
CONPES 3918. 2018. CONPES 3918. Estrategia para la implementación de los Objetivos
de Desarrollo Sostenible (ODS) en Colombia. [Strategy for the implementation of the
Sustainable Development Goals (SDG) in Colombia]. https://colaboracion.dnp.
gov.co/CDT/Conpes/Econ%C3%B3micos/3918.pdf.
CONPES 3934. 2018. CONPES 3934. Política de Crecimiento Verde. [Green Growth
Policy]. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3934.pdf.
CONPES 3975. 2019. CONPES 3975. Política Nacional para la Transformación Digital e
Inteligencia Artificial. [National Policy for Digital Transformation and Artificial
Intelligence]. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3975.pdf.
CONPES 3990. 2020. CONPES 3990. Colombia potencia bioceánica sostenible 2030.
[Colombia sustainable bi-oceanic power 2030].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3990.pdf.
CONPES 4004. 2020. CONPES 4004. Economía circular en la gestión de los servicios de
agua potable y manejo de aguas residuales. [Circular economy in the management of
Challenges for Biorefineries in Latin America: A Prospective Analysis 95
drinking water services and wastewater management].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/4004.pdf.
CONPES 4021. 2020. CONPES 4021. Política Nacional para el Control de la
Deforestación y la Gestión Sostenible de los Bosques. [National Policy for the Control
of Deforestation and the Sustainable Management of Forests].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/4021.pdf.
CONPES 4050. 2021. CONPES 4050. Poítica para la consolidación del Sistema Nacional
de Áreas Protegidas. [Policy for the consolidation of the National System of Protected
Areas]. SINAP. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/4050.pdf.
CONPES 4062. 2021. CONPES 4062. Politica Nacional de Propiedad Intelectual.
[National Intellectual Property Policy].
https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/4062.pdf.
CONPES 4069. 2021. CONPES 4069. Política nacional de ciencia, tecnología e
innovación 2022-2031. [National science, technology and innovation policy 2022-
2031]. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/4069.pdf.
CONPES 4075. 2022. CONPES 4075. Política de Transición Energética. [Energy
Transition Policy]. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3
micos/4075.pdf.
CONPES 4085. 2022. Conpes 4085. Política de internacionalización para el desarrollo
productivo regional. [Internationalization policy for regional productive
development]. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/
4085.pdf.
CONPES 4098. 2022. CONPES 4098. Política para impulsar la competitividad
agropecuaria. [Policy to promote agricultural competitiveness]. https://colaboracion.
dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/4098.pdf.
Consejo Económico para América Latina (CEPAL). 2015. Bioeconomia, nuevas
oportunidades para la agricultura. [Bioeconomy, new opportunities for agriculture].
Conteratto, C., F. D. Artuzo, O. I. Benedetti Santos, and E. Talamini. 2021. “Biorefinery:
A comprehensive concept for the sociotechnical transition toward bioeconomy.”
Renewable and Sustainable Energy Reviews 151. doi: 10.1016/j.rser.2021.111527.
Corrales-Ureña, Y. R., C. Villalobos-Bermúdez, R. Pereira, M. Camacho, E. Estrada, O.
Argüello-Miranda, and J. R. Vega-Baudrit. 2018. “Biogenic silica-based
microparticles obtained as a sub-product of the nanocellulose extraction process from
pineapple peels.” Sci Rep 8 (1):10417. doi: 10.1038/s41598-018-28444-4.
Costa, Jose Augusto Martini. 2020. From Sugarcane To Ethanol: The Historical Process
That Transformed Brazil Into A Biofuel Superpower. Vol. 10, 2020. Biofuel; Brazil;
Historical Institutionalism; Sugarcane.
Daza Serna, L. V., J. C. Solarte Toro, S. Serna Loaiza, Y. Chacón Perez, and C. A. Cardona
Alzate. 2016. “Agricultural Waste Management Through Energy Producing
Biorefineries: The Colombian Case.” Waste and Biomass Valorization 7 (4):789-798.
doi: 10.1007/s12649-016-9576-3.
de Arruda, Priscila Vaz, Rita de Cássia Lacerda Brambilla Rodrigu, Débora Danielle
Virgínio da Silva, and Maria das Graças de Almeida Felipe. 2011. “Evaluation of
hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes
96 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
for xylitol production in sugarcane hemicellulosic hydrolysate.” Biodegradation
22:815-822. doi: 10.1007/s10532-010-9397-1.
Del Pozo, C., J. Bartrolí, S. Alier, N. Puy, and E. Fàbregas. 2020. “Production of
antioxidants and other value-added compounds from coffee silverskin via pyrolysis
under a biorefinery approach.” Waste Manag 109:19-27. doi: 10.1016/j.wasman.
2020.04.044.
Departmento Nacional de Planeación [National Planning Department], DNP. 2018.
Bioeconomía [Bioeconomy].
https://www.dnp.gov.co/Crecimiento-Verde/Ejes estrategicos/Paginas/Bioeconom%C3%ADa.aspx. Bogotá: DNP.
Dutta, Shanta, Iris K.M. Yu, Daniel C.W. Tsang, Yun Hau Ng, Yong Sik Ok, James
Sherwood, and James H. Clark. 2019. “Green synthesis of gamma-valerolactone
(GVL) through hydrogenation of biomass-derived levulinic acid using non-noble
metal catalysts: A critical review.” Chemical Engineering Journal 372:992-1006. doi:
10.1016/j.cej.2019.04.199.
Dutta, Shanta, Qiaozhi Zhang, Yang Cao, Chunfei Wu, Konstantinos Moustakas, Shicheng
Zhang, Ka-Hing Wong, and Daniel C. W. Tsang. 2022. “Catalytic valorisation of
various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural:
Influence of feedstock properties and ferric chloride.” Bioresource Technology
357:127376. doi: 10.1016/j.biortech.2022.127376.
Dzyazko, Yuliya S., Olexii V. Palchik, Vladimir M. Ogenko, Leon Y. Shtemberg, Valerii
I. Bogomaz, Sergii A. Protsenko, Vladimir G. Khomenko, Irina S. Makeeva, Oxana
V. Chernysh, and Olexander G. Dzyazko. 2019. “Nanoporous Biochar for Removal of
Toxic Organic Compounds from Water.” Nanophotonics, Nanooptics,
Nanobiotechnology, and Their Applications, Cham, 2019//.
E4tech (UK) Ltd. 2017. Advanced drop-in biofuels UK production capacity outlook to
2030. Edited by Temple and Scarlett Research. for Department for Transport in
partnership with TRL. UK: Department for Transport.
Eixenberger, Daniela, Ana-Francis Carballo-Arce, José-Roberto Vega-Baudrit, Humberto
Trimino-Vazquez, Luis Roberto Villegas-Peñaranda, Anne Stöbener, Francisco
Aguilar, Jose-Aníbal Mora-Villalobos, Manuel Sandoval-Barrantes, Paul Bubenheim,
and Andreas Liese. 2022. “Tropical agroindustrial biowaste revalorization through
integrative biorefineries—review part II: pineapple, sugarcane and banana by products in Costa Rica.”
Biomass Conversion and Biorefinery. doi: 10.1007/s13399-022-02721-9.
European Comission. 2015. From the sugar platform to biofuels and biochemicals. In Final
report for the European Commission Directorate General Energy. Bruselas.
European Commission’s Research DG. 2005. “New Perspectives on the knowledge based
bio-economy.” Transforming life science knowledge into new, sustainable, eco efficient and competitive products.
Fang, Z., R. Smith, and X. Qui. 2017. “Production of Platform Chemicals from Sustainable
Resources.” Production of Platform Chemicals from Sustainable Resources: 375-410.
Felipe Hernández-Pérez, Andrés, Priscila Vaz de Arruda, Luciane Sene, Silvio Silvério da
Silva, Anuj Kumar Chandel, and Maria das Graças de Almeida Felipe. 2019. “Xylitol
bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for
Challenges for Biorefineries in Latin America: A Prospective Analysis 97
integrated biorefineries.” Critical Reviews in Biotechnology 39:924-943. doi:
10.1080/07388551.2019.1640658.
Franco-Bacca, Adriana Paola, Fernando Cervantes-Alvarez, Juan Daniel Macías, Joan
Alexis Castro-Betancur, Reynell Junior Pérez-Blanco, Oscar Hernán Giraldo Osorio,
Nayda Patricia Arias Duque, Geonel Rodríguez-Gattorno, and Juan José Alvarado Gil. 2021.
“Heat Transfer in Cassava Starch Biopolymers: Effect of the Addition of
Borax.” Polymers 13 (23):4106.
Gandla, Madhavi, Carlos Martín, and Leif Jönsson. 2018. “Analytical Enzymatic
Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio Based Chemicals.”
Energies 11:2936. doi: 10.3390/en11112936.
García Prieto, Carla V. 2018. “Diseño óptimo de biorrefinerías integradas basadas en
microalgas.” Doctor en Ingeniería Química Doctoral, Ingeniería Química,
Universidad Nacional del Sur. [Optimal design of integrated biorefineries based on
microalgae. Ph.D. in Chemical Engineering Ph.D., Chemical Engineering,
Universidad Nacional del Sur.].
Georgescu-Roegen, Nicholas. 1975. “Energy and Economic Myths.” Southern Economic
Journal 41 (3):347-381.
German Federal Goverment. 2021. Bioeconomy in Germany – Background.
https://biooekonomie.de/en/bioeconomy-germany-background#:~:text=The%20
German%20Federal%20Government%20defines,of%20a%20future%2Doriented%2
0economy. accesed july 25, 2022. Germany.
Giosuè, Chiara, Alessandra Mobili, Giuseppe Toscano, Maria Letizia Ruello, and
Francesca Tittarelli. 2016. “Effect of Biomass Waste Materials as Unconventional
Aggregates in Multifunctional Mortars for Indoor Application.” Procedia Engineering
161:655-659. doi: 10.1016/j.proeng.2016.08.724.
Giraldo, Jhonny Alejandro Poveda, Mariana Ortiz Sanchez, Juan Camilo Solarte-Toro, and
Carlos Ariel Cardona Alzate. 2020. “8 – Economic and social aspects of biorefineries.”
In Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value-Added
Chemicals within the Biorefinery Concept, edited by Edivaldo Ximenes Ferreira Filho,
Leonora Rios de Souza Moreira, Eduardo de Aquino Ximenes and Cristiane Sanchez
Farinas, 199-231. Elsevier.
Gobierno de Uruguay. [Government of Uruguay]. 2019. Ley N° 19829. [Law No. 19829].
Gestión Integral de Residuos. [Comprehensive Waste Management].
https://www.impo.com.uy/bases/leyes/19829-2019.
Gobierno de Uruguay. [Government of Uruguay]. 2021. Plan Nacional de Gestión de
Residuos. [National Waste Management Plan]. https://www.ambiente.gub.uy/oan/
documentos/PNGR-general.pdf.
Gómez-Cruz, Irene, María del Mar Contreras, Inmaculada Romero, and Eulogio Castro.
2021. “A biorefinery approach to obtain antioxidants, lignin and sugars from
exhausted olive pomace.” Journal of Industrial and Engineering Chemistry 96:356-
363. doi: https://doi.org/10.1016/j.jiec.2021.01.042.
Grangeia, Carolina, Luan Santos, and Lira Luz Benites Lazaro. 2022. “The Brazilian
biofuel policy (RenovaBio) and its uncertainties: An assessment of technical,
socioeconomic and institutional aspects.” Energy Conversion and Management: X
13:100156. doi: https://doi.org/10.1016/j.ecmx.2021.100156.
98 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
Hbaieb, S., W. Kammoun, C. Delaite, M. Abid, S. Abid, and R. El Gharbi. 2015. “New
Copolyesters Containing Aliphatic and Bio-Based Furanic Units by Bulk
Copolycondensation.” Journal of Macromolecular Science, Part A 52:365-373. doi:
10.1080/10601325.2015.1018807.
Hernández-Pérez, Andrés Felipe, Priscila Vaz de Arruda, and Maria das Graças de Almeida
Felipe. 2016. “Sugarcane straw as a feedstock for xylitol production by Candida
guilliermondii FTI 20037.” Brazilian Journal of Microbiology 47:489-496. doi:
10.1016/j.bjm.2016.01.019.
Hong, Kuk-Ki, and Jens Nielsen. 2012. “Metabolic engineering of Saccharomyces
cerevisiae: a key cell factory platform for future biorefineries.” Cellular and
Molecular Life Sciences 69:2671-2690. doi: 10.1007/s00018-012-0945-1.
Hughes, Stephen R., Juan Carlos López-Núñez, Marjorie A. Jones, Bryan R. Moser, Elby
J. Cox, Mitch Lindquist, Luz Ángela Galindo-Leva, Néstor M. Riaño-Herrera, Nelson
Rodriguez-Valencia, Fernando Gast, David L. Cedeño, Ken Tasaki, Robert C. Brown,
Al Darzins, and Lane Brunner. 2014. “Sustainable conversion of coffee and other crop
wastes to biofuels and bioproducts using coupled biochemical and thermochemical
processes in a multi-stage biorefinery concept.” Applied Microbiology and
Biotechnology 98:8413-8431. doi: 10.1007/s00253-014-5991-1.
Hugo Chavarría, Eduardo Trigo (IICA), and and Adrián Rodríguez (ECLAC). 2019. “The
bioeconomy: a catalyst for the sustainable development of agriculture and rural
territories in LAC http://www.iica-ecuador.org/sisbio/doc_informacion/IICA_
Cap4_Eng_V4.pdf. accesed july 2022.”
IEA Bioenergy. 2009. Biorefineries: Adding value to the sustainable utilisation of biomass.
In Energy Agency.
IEA Bioenergy. 2021. “Renewable Biofuels.” accessed July 25. https://www.iea.org/
reports/renewables-2021/biofuels?mode=transport&region=World&publication=
2021&flow=Consumption&product=Ethanol.
IEA Bioenergy., Agenzia nazionale per le nuove tecnologie l’energia e lo sviluppo
economico sostenibile., and ENEA. [National Agency for New Energy Technology
and Sustainable Economic Development, and ENEA]. 2022. Biorefinery Plant Portal.
IEA bioenergy, Task 42.
IICA. 2020. Bioeconomía: Una estrategia de desarrollo para la argentina del siglo xxi
Impulsando a la bioeconomía como modelo de desarrollo sustentable: entre las
políticas públicas y las estrategias privadas [Bioeconomy: A development strategy for
Argentina in the 21st century Promoting the bioeconomy as a model of sustainable
development: between public policies and private strategies]. https://repositorio.
iica.int/bitstream/handle/11324/12478/BVE20108164e.pdf?sequence=1&isAllowed
=y accesed july 2022.
International Furan Chemicals B. V. 2016. Historical overview and industrial development
of furfural.
Isikgor, Furkan H., and C. Remzi Becer. 2015. “Lignocellulosic biomass: a sustainable
platform for the production of bio-based chemicals and polymers.” Polymer Chemistry
6:4497-4559. doi: 10.1039/C5PY00263J.
Jofre, Fanny Machado, Fernanda Weber Bordini, Italo de Andrade Bianchini, Sarah de
Souza Queiroz, Tatiane da Silva Boaes, Andrés Felipe Hernández-Pérez, and Maria
Challenges for Biorefineries in Latin America: A Prospective Analysis 99
das Graças de Almeida Felipe. 2022. “8 – Xylitol and sorbitol: production routes,
challenges and opportunities in biorefineries integration.” In Production of Top 12
Biochemicals Selected by USDOE from Renewable Resources, edited by Anuj K.
Chandel and Fernando Segato, 233-268. Elsevier.
Johnson, Thomas G., and Ira Altman. 2014. “Rural development opportunities in the
bioeconomy.” Biomass and Bioenergy 63:341-344. doi: https://doi.org/10.1016/
j.biombioe.2014.01.028.
José Roberto Vega Baudrit. 2007. “La Nanotecnología en Costa Rica: la experiencia en el
LANOTEC [Nanotechnology in Costa Rica: the experience at LANOTEC].
https://www.cientec.or.cr/exploraciones/ponencias2007/JoseRobertoVega.pdf.” lX
Congreso Nacional de Ciencias Exploraciones fuera y dentro del aula 24 y 25 de
agosto, 2007, Instituto Tecnológico de Costa Rica Cartago, Costa Rica. [IX National
Congress of Sciences Explorations outside and inside the classroom August 24 and
25, 2007, Technological Institute of Costa Rica Cartago, Costa Rica].
Juan-García, A., C. Gallego, and G. Font. 2015. “Toxicidad del Bisfenol A: Revisión
[Bisphenol A Toxicity: Review].” Revista de Toxicologia 32:144-160.
Kalantari, Mohammad, Mohammad Kazemeini, and Ayyoob Arpanaei. 2013. “Evaluation
of biodiesel production using lipase immobilized on magnetic silica nanocomposite
particles of various structures.” Biochemical Engineering Journal 79:267-273. doi:
https://doi.org/10.1016/j.bej.2013.09.001.
Kamm, Birgit. 2014. “Biorefineries – their scenarios and challenges.” Pure and Applied
Chemistry 86 (5):821-831. doi: doi:10.1515/pac-2013-1035.
Kapanji, Kutemba K., Kathleen F. Haigh, and Johann F. Görgens. 2019. “Techno-economic
analysis of chemically catalysed lignocellulose biorefineries at a typical sugar mill:
Sorbitol or glucaric acid and electricity co-production.” Bioresource Technology
289:121635. doi: https://doi.org/10.1016/j.biortech.2019.121635.
Khoshnevisan, Benyamin, Meisam Tabatabaei, Panagiotis Tsapekos, Shahin Rafiee,
Mortaza Aghbashlo, Susanne Lindeneg, and Irini Angelidaki. 2020. “Environmental
life cycle assessment of different biorefinery platforms valorizing municipal solid
waste to bioenergy, microbial protein, lactic and succinic acid.” Renewable and
Sustainable Energy Reviews 117. doi: 10.1016/J.RSER.2019.109493.
King, David. 2010. The future of industrial biorefineries. Cologny, Geneva: World
Economic Forum.
Kirchherr, Julian, Denise Reike, and Marko Hekkert. 2017. “Conceptualizing the circular
economy: An analysis of 114 definitions.” Resources, Conservation and Recycling
127:221-232. doi: 10.1016/j.resconrec.2017.09.005.
Kogje, Anushree B, and Anand Ghosalkar. 2017. “Xylitol production by genetically
modified industrial strain of Saccharomyces cerevisiae using glycerol as co-substrate.”
Journal of Industrial Microbiology and Biotechnology 44:961-971. doi: 10.1007/
s10295-017-1914-3.
Koutinas, Apostolis A., Anestis Vlysidis, Daniel Pleissner, Nikolaos Kopsahelis, Isabel
Lopez Garcia, Ioannis K. Kookos, Seraphim Papanikolaou, Tsz Him Kwan, and Carol
Sze Ki Lin. 2014. “Valorization of industrial waste and by-product streams via
fermentation for the production of chemicals and biopolymers.” Chemical Society
Reviews 43:2587-2627. doi: 10.1039/C3CS60293A.
100 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
Lei, Tingzhou, Zhiwei Wang, Xia Chang, Lu Lin, Xiaoyu Yan, Yincong Sun, Xinguang
Shi, Xiaofeng He, and Jinling Zhu. 2016. “Performance and emission characteristics
of a diesel engine running on optimized ethyl levulinate–biodiesel–diesel blends.”
Energy 95:29-40. doi: 10.1016/j.energy.2015.11.059.
Li, Jingen, Liangcai Lin, Tao Sun, Jing Xu, Jingxiao Ji, Qian Liu, and Chaoguang Tian.
2020. Direct production of commodity chemicals from lignocellulose using
Myceliophthora thermophila. In Metabolic Engineering: Elsevier Inc.
Li, Xiaodan, Pei Jia, and Tiefeng Wang. 2016. “Furfural: A Promising Platform Compound
for Sustainable Production of C4 and C5 Chemicals.” ACS Catalysis 6 (11):7621-
7640. doi: 10.1021/acscatal.6b01838.
Liu, Changshui, Yamei Ding, Mo Xian, Min Liu, Huizhou Liu, Qingjun Ma, and Guang
Zhao. 2017. “Malonyl-CoA pathway: a promising route for 3-hydroxypropionate
biosynthesis.” Critical Reviews in Biotechnology 37:933-941. doi: 10.1080/
07388551.2016.1272093.
Magdalena, Borges, Atilio Deana, Lucia Pittaluga, Carolina Balian, and Adrián Rodríguez.
2021. Contribución de la bioeconomía a la recuperación pospandemia de COVID-19
en el Uruguay Biotecnología y valorización de subproductos agropecuarios y
agroindustriales. [Contribution of the bioeconomy to the post-COVID-19 pandemic
recovery in Uruguay Biotechnology and recovery of agricultural and agro-industrial
by-products].
Mao, Feng, Shuainan Chen, Qiao Zhang, Long Yang, Feifei Wan, Dabo Jiang, Manman
Xiong, Chao Zhang, Yachun Liu, and Zaihui Fu. 2020. “Ru/P-Containing Porous
Biochar-Efficiently Catalyzed Cascade Conversion of Cellulose to Sorbitol in Water
under Medium-Pressure H2 Atmosphere.” Bulletin of the Chemical Society of Japan
93 (8):1026-1035. doi: 10.1246/bcsj.20200095.
Marín-Valencia, Paula Andrea, Estefanny Carmona-Garcia, Jhonny Alejandro Poveda
Giraldo, Nayda Patricia Arias Duque, Lina Fernanda Ballesteros, and Carlos Ariel
Cardona Alzate. 2021. “The integral use of aromatic plants: prefeasibility comparison
of stand-alone and biorefinery processes using thyme (Thymus vulgaris) as base case.”
Biomass Conversion and Biorefinery 11 (2):681-691. doi: 10.1007/s13399-020-
00734-w.
Market Research Future. 2020. Global Isoprene Market: Information by Grade (Polymer
Grade and Chemical Grade). In : Application (Styrene Isoprene Styrene, Isobutylene
Isoprene, Polyisoprene, Block Co-Polymer, and Others), End-Use Industry
(Automotive, Medical, Construction, Personal Care, Sports & Leisure, and Others),
and Region (North America, Europe, Asia-Pacific.
Master Watch. 2022. “2,5-Furandicarboxylic Acid (FDCA) Market Size from 2022 to
2028.” accessed july 8. https://www.marketwatch.com/press-release/25-furandi
carboxylic-acid-fdca-market-size-from-2022-to-2028-2022-06-09.
Mazzoli, Roberto. 2020. “Metabolic engineering strategies for consolidated production of
lactic acid from lignocellulosic biomass.” Biotechnology and Applied Biochemistry
67:61-72. doi: 10.1002/BAB.1869.
Mika, László T., Edit Cséfalvay, and Áron Németh. 2018. “Catalytic Conversion of
Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability.” Chemical
Reviews 118:505-613. doi: 10.1021/ACS.CHEMREV.7B00395.
Challenges for Biorefineries in Latin America: A Prospective Analysis 101
Ministerio de Ambiente y Desarrollo Sostenible. 1996. Política Nacional de Biodiversidad.
[Ministry of Environment and Sustainable Development. 1996. National Biodiversity
Policy].
Ministerio de Ambiente y Desarrollo Sostenible. 2012. Política para la Gestión Integral de
la Biodiversidad y los Servicios Ecosistémicos. [Ministry of Environment and
Sustainable Development. 2012. Policy for the Comprehensive Management of
Biodiversity and Ecosystem Services]. https://www.minambiente.gov.co/wp content/uploads/2021/10/Poli%CC%81ticaNacional-de-Gestio%CC%81n-Integral de-la-Biodiver.pdf.
Ministerio de Ciencia Tecnología e Innovación. 2020. Bioeconomía para una potencia viva
y diversa; Hacia una sociedad impulsada por el conocimiento. [Ministry of Science
Technology and Innovation. 2020. Bioeconomy for a living and diverse power;
Towards a knowledge-driven society]. https://minciencias.gov.co/sites/default/files/
upload/paginas/bioeconomia_para_un_crecimiento_sostenible-qm_print.pdf.
Ministerio del Medio Ambiente de Chile. 2020. Estrategia nacional de residuos orgánicos
Chile 2040. [Ministry of the Environment of Chile. 2020. Chile 2040 National
Organic Waste Strategy.]. https://economiacircular.mma.gob.cl/wp-content/uploads/
2021/03/Estrategia-Nacional-de-Residuos-Organicos-Chile-2040.pdf.
Mohan, D., K. Abhishek, A. Sarswat, M. Patel, P. Singh, and C. Pittman. 2018. “Biochar
production and applications in soil fertility and carbon sequestration – a sustainable
solution to crop-residue burning in India.” RSC Advances 8(1):508-520. doi:
https://doi.org/10.1039/c7ra10353k.
Moncada B, Jonathan, Valentina Aristizábal M, and Carlos A. Cardona A. 2016. “Design
strategies for sustainable biorefineries.” Biochemical Engineering Journal 116:122-
134. doi: https://doi.org/10.1016/j.bej.2016.06.009.
Morakile, Tumelo, Mohsen Mandegari, Somayeh Farzad, and Johann.F. Görgens. 2022.
“Comparative techno-economic assessment of sugarcane biorefineries producing
glutamic acid, levulinic acid and xylitol from sugarcane.” Industrial Crops and
Products 184:115053. doi: 10.1016/j.indcrop.2022.115053.
Mora-Sandí, Anthony, Abigail Ramírez-González, Luis Castillo-Henríquez, Mary
Lopretti-Correa, and José Roberto Vega-Baudrit. 2021. “Persea Americana Agro Industrial
Waste Biorefinery for Sustainable High-Value-Added Products.” Polymers 13 (11):1727.
Moreda, Iván López. 2016. “The potential of biogas production in Uruguay.” Renewable
and Sustainable Energy Reviews 54:1580-1591. doi: https://doi.org/10.1016/
j.rser.2015.10.099.
Murrell, J. Colin, Terry J. McGenity, and Andrew T. Crombie. 2020. “Microbial
metabolism of isoprene: a much-neglected climate-active gas.” Microbiology
166:600-613. doi: 10.1099/mic.0.000931.
Nawaj Alam, Shahrukh, Bhaskar Singh, and Abhishek Guldhe. 2021. “Aquatic weed as a
biorefinery resource for biofuels and value-added products: Challenges and recent
advancements.” Cleaner Engineering and Technology 4:100235. doi: https://doi.org/
10.1016/j.clet.2021.100235.
102 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
Nghiem, N., C. Nguyen, C. Drapcho, and T. Walker. 2013. “Sweet sorghum biorefinery for
production of fuel ethanol and value-added co-products.” Biological Engineering
Transactions 6. doi: 10.13031/bet.6.9926.
Nunes, Bruno. 2017. Brazilian Policies and Programs in Bioeconomy. https://fapesp.br/
eventos/2017/6dialogue/08-11-17/15h45_Bruno_Nunes.pdf. accessed on july 2022.
OCDE. 2009. The Bioeconomy to 2030: Designing a policy agenda, vol. 9789264056.
Organisation for Economic Cooperation and Development (OECD); 2009.
https://doi.org/10.1787/9789264056886-en.
ONU. 1992. Convenio de Diversidad Biológica. [Biological Diversity Convention].
http://chmcolombia.co/politica-y-cooperacion/acuerdos/cdb/#:~:text=El%20
Convenio%20de%20la%20Diversidad,el%20Medio%20Ambiente%20y%20Desarro
llo.
Orejuela Escobar, Lourdes M. 2018. “Biorefinería: un modelo de negocios de productos de
alto valor agregado a partir de desechos agrícolas e industriales y promotora de
desarrollo sustentable en el contexto de la bioeconomía.” [Biorefinery: a business
model for high value-added products from agricultural and industrial waste and a
promoter of sustainable development in the context of the bioeconomy]. Memorias Y
Boletines De La Universidad Del Azuay [Proceedings and Bulletins of the University
of Azuay] 1:199-214.
Ortiz-Sanchez, M., J. C. Solarte-Toro, C. E. Orrego-Alzate, C. D. Acosta-Medina, and C.
A. Cardona-Alzate. 2021. “Integral use of orange peel waste through the biorefinery
concept: an experimental, technical, energy, and economic assessment.” Biomass
Conversion and Biorefinery 11 (2):645-659. doi: 10.1007/s13399-020-00627-y.
Ortiz-Sanchez, Mariana, and Carlos Ariel Cardona Alzate. 2022. “Analysis of the routes
for biomass processing towards sustainable development in the conceptual design
step: Strategy based on the compendium of bioprocesses portfolio.” Bioresource
Technology 350:126852. doi: https://doi.org/10.1016/j.biortech.2022.126852.
Pacheco-Torgal, F. 2020. “1 – Introduction to biobased materials and biotechnologies for
eco-efficient construction.” In Bio-Based Materials and Biotechnologies for Eco
Efficient Construction, edited by Fernando Pacheco-Torgal, Volodymyr Ivanov and
Daniel C. W. Tsang, 1-16. Woodhead Publishing.
Padi, Richard Kingsley, and Annie Chimphango. 2020. “Feasibility of commercial waste
biorefineries for cassava starch industries: Techno-economic assessment.”
Bioresource Technology 297:122461. doi: https://doi.org/10.1016/j.biortech.2019.122461.
Papageorgiou, G. Z., V. Tsanaktsis, D. G. Papageorgiou, S. Exarhopoulos, M.
Papageorgiou, and D. N. Bikiaris. 2014. “Evaluation of polyesters from renewable
resources as alternatives to the current fossil-based polymers. Phase transitions of
poly(butylene 2,5-furan-dicarboxylate).” Polymer 55:3846-3858.
doi: 10.1016/j.polymer.2014.06.025.
Papageorgiou, George Z., Dimitrios G. Papageorgiou, Zoi. Terzopoulou, and Dimitrios N.
Bikiaris. 2016. Production of bio-based 2,5-furan dicarboxylate polyesters: Recent
progress and critical aspects in their synthesis and thermal properties.
In European Polymer Journal.
Challenges for Biorefineries in Latin America: A Prospective Analysis 103
Parra-Ramírez, Daniela, Juan Camilo Solarte-Toro, and Carlos Ariel Cardona-Alzate.
2020. “Techno-Economic and Environmental Analysis of Biogas Production from
Plantain Pseudostem Waste in Colombia.” Waste and Biomass Valorization 11
(7):3161-3171. doi: 10.1007/s12649-019-00643-8.
Patermann, Christian, and Alfredo Aguilar. 2018. “The origins of the bioeconomy in the
European Union.” New Biotechnology 40:20-24. doi: 10.1016/j.nbt.2017.04.002.
Patrizi, Nicoletta, Morena Bruno, Fabrizio Saladini, Maria Laura Parisi, Riccardo M.
Pulselli, Anne Belinda Bjerre, and Simone Bastianoni. 2020. “Sustainability
Assessment of Biorefinery Systems Based on Two Food Residues in Africa.”
Frontiers in Sustainable Food Systems 4. doi: 10.3389/fsufs.2020.522614.
Peña, S., and J. Lopez. 2020. “Sustainable development and learning opportunity of
biorefineries: A biomass alternative.” Revista de ciencias sociales 26:401-413.
Peng, Lincai, Lu Lin, Junhua Zhang, Junping Zhuang, Beixiao Zhang, and Yan Gong. 2010.
“Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides.” Molecules
(Basel, Switzerland) 15:5258-72. doi: 10.3390/molecules15085258.
Perez., Andrea Teresa Espinoza. 2017. “Biorefinery supply chain design optimization under
sustainability dimensions.” Doctoral, Computational Engineering, Finance, and
Science [cs.CE], University of Lorraine (ffNNT: 2017LORR0222ff. fftel-0181626).
Pileidis, Fi., and M. Titirici. 2016a. Levulinic Acid Biorefineries: New Challenges for
Efficient Utilization of Biomass. In Chem Sus Chem.
Pileidis, Filoklis D., and Maria-Magdalena Titirici. 2016b. “Levulinic Acid Biorefineries:
New Challenges for Efficient Utilization of Biomass.” Chem Sus Chem 9 (6):562-582.
doi: https://doi.org/10.1002/cssc.201501405.
Potrč, Sanja, Lidija Čuček, Mariano Martin, and Zdravko Kravanja. 2020. “Synthesis of
European Union Biorefinery Supply Networks Considering Sustainability
Objectives.” Processes 8 (12):1588.
Prabha, Syama, Aravind K. Vijay, Rony Rajan Paul, and Basil George. 2022.
“Cyanobacterial biorefinery: Towards economic feasibility through the maximum
valorization of biomass.” Science of The Total Environment 814:152795. doi:
10.1016/j.scitotenv.2021.152795.
Queiroz, Sarah S., Fanny M. Jofre, Solange I. Mussatto, and Maria das Graças A. Felipe.
2022. “Scaling up xylitol bioproduction: Challenges to achieve a profitable
bioprocess.” Renewable and Sustainable Energy Reviews 154:111789. doi: 10.1016/
j.rser.2021.111789.
Rajabinejad, H., I. Bucişcanu, and S. Maier. 2019. Current approaches for raw wool waste
management and unconventional valorization: A review. In Environmental
Engineering and Management Journal.
Rajesh, R. O., T. K. Godan, A. K. Rai, D. Sahoo, A. Pandey, and P. Binod. 2019.
“Biosynthesis of 2,5-furan dicarboxylic acid by Aspergillus flavus APLS-1: Process
optimization and intermediate product analysis.” Bioresource Technology 284:155-
160. doi: 10.1016/j.biortech.2019.03.105.
Ramcilovic-Suominen, S., and H. Pülzl. 2018. “Sustainable development – A ‘selling point’
of the emerging EU bioeconomy policy framework?” Journal of Cleaner Production
172:4170-4180. doi: https://doi.org/10.1016/j.jclepro.2016.12.157.
104 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
Ratan, Jatinder Kumar, Manjeet Kaur, and Bharadwaj Adiraju. 2018. “Synthesis of
activated carbon from agricultural waste using a simple method: Characterization,
parametric and isotherms study.” Materials Today: Proceedings 5:3334-3345. doi:
10.1016/j.matpr.2017.11.576.
Redondo-Gómez, Carlos, Maricruz Rodríguez Quesada, Silvia Vallejo Astúa, José Pablo
Murillo Zamora, Mary Lopretti, and José Roberto Vega-Baudrit. 2020. “Biorefinery
of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers.”
Molecules 25 (17):3829.
Rengel, Rocío, Inmaculada Giraldez, Manuel J. Díaz, Trinidad García, Javier Vigara, and
Rosa León. 2022. “Simultaneous production of carotenoids and chemical building
blocks precursors from chlorophyta microalgae.” Bioresource Technology
351:127035. doi: https://doi.org/10.1016/j.biortech.2022.127035.
Rodríguez, A. G., O. Sotomayor, and M. Rodrigues. 2019. “Hacia una bioeconomía
sostenible en América Latina y el Caribe: elementos para una visión regional.”
[Towards a sustainable bioeconomy in Latin America and the Caribbean: elements
for a regional vision]. Serie Recursos Naturales y Desarrollo, [Natural Resources and
Development Series], Santiago.
Rodríguez, Adrián G., Andrés O. Mondaini, and Maureen A. Hitschfeld. 2017.
Bioeconomía en América Latina y el Caribe Contexto global y regional y perspectivas,
Desarrollo Productivo: CEPAL-ONU. [Bioeconomy in Latin America and the
Caribbean Global and regional context and perspectives, Productive Development].
Rodríguez-Aguilera, Jessica., Adolfo. Brown-Gómez, Amaury. Delgado, and Georgina.
Michelena. 2020. “Producción de ácido levulínico: una revisión bibliográfica
[Levulinic acid production: a literature review].” ICIDCA sobre los derivados de la
caña de azúcar 52:36-46.
Rodriguez-Fernandez, Silvia, Ismael Díaz, María González-Miquel, Emilio J. González,
and Manuel Rodriguez. 2022. “Optimization-based analysis of integrated
lignocellulosic biorefineries in Spain focusing on building blocks.” Biomass
Conversion and Biorefinery. doi: 10.1007/s13399-021-02247-6.
Rorrer, N. A., D. R. Vardon, J. R. Dorgan, E. J. Gjersing, and G. T. Beckham. 2017.
“Biomass-derived monomers for performance-differentiated fiber reinforced polymer
composites.” Green Chemistry 19:2812-2825. doi: 10.1039/c7gc00320j.
Sacramento-Rivero, J. C., G. Romero, E. Cortés-Rodríguez, E. Pech, and S. Blanco-Rosete.
2010. A diagnostic study on the development of biorefineries in Mexico. Rev. Mex.
Ing. Quím [online]. 2010, vol.9, n.3, pp.261-283.
Sajid, M., X. Zhao, and D. Liu. 2018. “Production of 2,5-furandicarboxylic acid (FDCA)
from 5-hydroxymethylfurfural (HMF): Recent progress focusing on the chemical catalytic routes.”
Green chem 24:5427-5453.
Santiago, B.L.S., and R. Guirardello. 2020. “5-hydroxymethylfurfural production in a
lignocellulosic biorefinery: Techno-economic analysis.” Chemical Engineering
Transactions 80:139-144. doi: 10.3303/CET2080024.
Sara Piedrahita Rodriguez. 2020. “Design of biorefineries with multiple raw materials for
the use of agroindustrial waste in post-conflictzones in colombia.” Magister Magister,
Chemical Enginering, Universidad Nacional de Colombia. Sede Manizales. [Magister
Challenges for Biorefineries in Latin America: A Prospective Analysis 105
Magister, Chemical Engineering, National University of Colombia. Manizales
Headquarters].
Sari, Yessie W., Sumaya Yulia Putri, Noor Intan, Abdurrahman Bahtiar, and Mersi
Kurniati. 2021. “The effect of sorbitol and sweet sorghum to carrageenan ratio on the
physicochemical properties of sweet sorghum/carrageenan bioplastics.” Biomass
Conversion and Biorefinery. doi: 10.1007/s13399-020-01254-3.
Sauer, M., D. Porro, D. Mattanovich, and P. Branduardi. 2008. “Microbial production of
organic acids: expanding the markets.” Trends Biotechnol 26 (2):100-8. doi:
10.1016/j.tibtech.2007.11.006.
Schmidt, Stanislaus, Felix J. Gatti, Manuel Luitz, Benjamin S. Ritter, Bernd Bruchmann,
and Rolf Mülhaupt. 2017. “Erythritol Dicarbonate as Intermediate for Solvent- and
Isocyanate-Free Tailoring of Bio-Based Polyhydroxyurethane Thermoplastics and
Thermoplastic Elastomers.” Macromolecules 50:2296-2303.
doi: 10.1021/acs.macromol.6b02787.
Senthil, Chenrayan, and Chang Woo Lee. 2021. “Biomass-derived biochar materials as
sustainable energy sources for electrochemical energy storage devices.” Renewable
and Sustainable Energy Reviews 137:110464.
doi: https://doi.org/10.1016/j.rser.2020.110464.
Servian-Rivas, Luis David, Elia Ruiz Pachón, Manuel Rodríguez, María González-Miquel,
Emilio J. González, and Ismael Díaz. 2022. “Techno-economic and environmental
impact assessment of an olive tree pruning waste multiproduct biorefinery.” Food and
Bioproducts Processing 134:95-108. doi: 10.1016/j.fbp.2022.05.003.
Shahid, Muhammad Kashif, Ayesha Batool, Ayesha Kashif, Muhammad Haq Nawaz,
Muhammad Aslam, Nafees Iqbal, and Younggyun Choi. 2021. “Biofuels and
biorefineries: Development, application and future perspectives emphasizing the
environmental and economic aspects.” Journal of Environmental Management
297:113268. doi: https://doi.org/10.1016/j.jenvman.2021.113268.
Sharma, A., A. Sharma, J. Singh, P. Sharma, G. S. Tomar, S. Singh, and L. Nain. 2020. “A
biorefinery approach for the production of ferulic acid from agroresidues through
ferulic acid esterase of lactic acid bacteria.” 3 Biotech 10 (8):367.
doi: 10.1007/s13205-020-02360-9.
Sivamani, S. Chandrasekaran, A., M. Balajii, and A. Hosseini-Bandegharaei
Shanmugaprakash, A. Baskar, R. 2018. “Evaluation of the potential of cassava-based
residues for biofuels production.” Environ. Sci. Biotechnol 17:553-570. doi:
https://doi.org/10.1007/s11157-018-9475-0.
Solarte-Toro, J. C., and C. A. Cardona Alzate. 2021a. “Biorefineries as the base for
accomplishing the sustainable development goals (SDGs) and the transition to
bioeconomy: Technical aspects, challenges and perspectives.” Bioresour Technol
340:125626. doi: 10.1016/j.biortech.2021.125626.
Solarte-Toro, Juan Camilo, and Carlos Ariel Cardona Alzate. 2021b. “Biorefineries as the
base for accomplishing the sustainable development goals (SDGs) and the transition
to bioeconomy: Technical aspects, challenges and perspectives.” Bioresource
Technology 340:125626. doi: https://doi.org/10.1016/j.biortech.2021.125626.
Solarte-Toro, Juan Camilo, Yessica Chacón-Pérez, and Carlos Ariel Cardona-Alzate. 2018.
“Evaluation of biogas and syngas as energy vectors for heat and power generation
106 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
using lignocellulosic biomass as raw material.” Electronic Journal of Biotechnology
33:52-62. doi: https://doi.org/10.1016/j.ejbt.2018.03.005.
Steven, Soen, Elvi Restiawaty, and Yazid Bindar. 2021. “Routes for energy and bio-silica
production from rice husk: A comprehensive review and emerging prospect.”
Renewable and Sustainable Energy Reviews 149:111329.
doi: https://doi.org/10.1016/j.rser.2021.111329.
Su, Jialei, Feng Shen, Mo Qiu, and Xinhua Qi. 2017. “High-Yield Production of Levulinic
Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.” Molecules 22 (2):285.
Suganya, T., M. Varman, H. H. Masjuki, and S. Renganathan. 2016. “Macroalgae and
microalgae as a potential source for commercial applications along with biofuels
production: A biorefinery approach.” Renewable and Sustainable Energy Reviews
55:909-941. doi: https://doi.org/10.1016/j.rser.2015.11.026.
Susana Alcaraz Argumánez. 2013. “Estudio tecno-energético de la producción de ácido
levulínico a partir de celulosa mediante un proceso combinado: Descomposición
hidrotérmica y deshidratación con catalizadores heterogéneos.” [Techno-energetic
study of the production of levulinic acid from cellulose through a combined process:
hydrothermal decomposition and dehydration with heterogeneous catalysts].
Bachelor en Ingeniería de la Energía, Ingeniería de la Energía, Universidad Rey Juan
Carlos. [Bachelor of Energy Engineering, Energy Engineering, Rey Juan Carlos University].
Takkellapati, S., T. Li, and M. A. Gonzalez. 2018. “An Overview of Biorefinery Derived
Platform Chemicals from a Cellulose and Hemicellulose Biorefinery.” Clean Technol
Environ Policy 20 (7):1615-1630. doi: 10.1007/s10098-018-1568-5.
Terzopoulou, Zoi, Lazaros Papadopoulos, Alexandra Zamboulis, Dimitrios G.
Papageorgiou, George Z. Papageorgiou, and Dimitrios N. Bikiaris. 2020. “Tuning the
properties of furandicarboxylic acid-based polyesters with copolymerization: A
review.” Polymers 12. doi: 10.3390/POLYM12061209.
Thanigaivel, S., A. K. Priya, Kingshuk Dutta, Saravanan Rajendran, Karthikeyan Sekar, A.
A. Jalil, and Matias Soto-Moscoso. 2022. “Role of nanotechnology for the conversion
of lignocellulosic biomass into biopotent energy: A biorefinery approach for waste to
value-added products.” Fuel 322:124236. doi: https://doi.org/10.1016/j.fuel.2022.124236.
Thanigaivel, Sundaram, Sundaram Vickram, Nibedita Dey, Govindarajan Gulothungan,
Ramasamy Subbaiya, Muthusamy Govarthanan, Natchimuthu Karmegam, and
Woong Kim. 2022. “The urge of algal biomass-based fuels for environmental
sustainability against a steady tide of biofuel conflict analysis: Is third-generation algal
biorefinery a boon?” Fuel 317:123494. doi: 10.1016/j.fuel.2022.123494.
Tolosa, R. A., G. Jimenez-Obando, N. P. Arias, C. A. Cardona, and O. Giraldo. 2014.
“Cementicious Materials Reinforcement Using Angustifolia kunth Bamboo Fiber
Covered with Nanostructured Manganese Oxide.” Industrial & Engineering
Chemistry Research 53 (20):8452-8463. doi: 10.1021/ie403958y.
Ubando, Aristotle T., Charles B. Felix, and Wei-Hsin Chen. 2020. “Biorefineries in circular
bioeconomy: A comprehensive review.” Bioresource Technology 299:122585. doi:
10.1016/j.biortech.2019.122585.
Challenges for Biorefineries in Latin America: A Prospective Analysis 107
Union, European. 2012. Innovating for Sustainable Growth: A Bioeconomy for Europe.
Vasiliev, Valery V., and Evgeny V. Morozov. 2018. “Introduction.” In Advanced
Mechanics of Composite Materials and Structures (Fourth Edition), edited by Valery
V. Vasiliev and Evgeny V. Morozov, xvii-xxv. Elsevier.
Verge, Pierre, Valérie Toniazzo, David Ruch, and João A.S. Bomfim. 2014.
“Unconventional plasticization threshold for a biobased bisphenol-A epoxy
substitution candidate displaying improved adhesion and water-resistance.” Industrial
Crops and Products 55:180-186. doi: 10.1016/j.indcrop.2014.01.048.
Vivien, F. D., M. Nieddu, N. Befort, R. Debref, and M. Giampietro. 2019a. “The Hijacking
of the Bioeconomy.” Ecological Economics 159 (June 2018):189-197. doi:
10.1016/j.ecolecon.2019.01.027.
Vivien, F. D., M. Nieddu, N. Befort, R. Debref, and M. Giampietro. 2019b. “The Hijacking
of the Bioeconomy.” Ecological Economics 159:189-197.
doi: 10.1016/j.ecolecon.2019.01.027.
Vu, Hang P., Luong N. Nguyen, Minh T. Vu, Md Abu Hasan Johir, Robert McLaughlan,
and Long D. Nghiem. 2020. “A comprehensive review on the framework to valorise
lignocellulosic biomass as biorefinery feedstocks.” Science of The Total Environment
743:140630. doi: 10.1016/j.scitotenv.2020.140630.
Vy Tran, A., S.-K. Park, H. Jin Lee, T. Yong Kim, Y. Kim, Y.-W. Suh, K.-Y. Lee, Y. Jin
Kim, and J. Baek. 2022. “Efficient Production of Adipic Acid by a Two-Step Catalytic
Reaction of Biomass-Derived 2,5-Furandicarboxylic Acid.” Chem Sus Chem 15. doi:
10.1002/cssc.202200375.
Wang, Shuguo., Zehui. Zhang, and Bing. Liu. 2015. Catalytic conversion of fructose and
5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4-
CoOx magnetite nanocatalyst. In ACS Sustainable Chemistry and Engineering.
Weber, Caroline Trevisan, Luciane Ferreira Trierweiler, and Jorge Otávio Trierweiler.
2020. “Food waste biorefinery advocating circular economy: Bioethanol and distilled
beverage from sweet potato.” Journal of Cleaner Production 268:121788. doi:
10.1016/j.jclepro.2020.121788.
Werpy, T., and G. Petersen. 2004. Top Value Added Chemicals from biomass. No.:
DOE/GO-102004-1992. www.osti.gov/bridge: U.S. Department of Energy, Office of
scientific and technical information.
Xie, Hongzhou, Linbo Wu, Bo-Geng Li, and Philippe Dubois. 2019. Modification of
Poly(ethylene 2,5-furandicarboxylate) with Biobased 1,5-Pentanediol: Significantly
Toughened Copolyesters Retaining High Tensile Strength and O2 Barrier Property. In
Biomacromolecules.
Yang ST., Zhang K., Zhang B., and Huang H. 2011. “Biobase chemicals: Fumaric acid.”
In Comprehensive Biotechnology, edited by Moo-Young and Bulter Michael, 163-77.
The Netherlands.
Yao, Zhen, Pingping Zhou, Bingmei Su, Sisi Su, Lidan Ye, and Hongwei Yu. 2018.
“Enhanced Isoprene Production by Reconstruction of Metabolic Balance between
Strengthened Precursor Supply and Improved Isoprene Synthase in Saccharomyces
cerevisiae.” ACS Synthetic Biology 7:2308-2316. doi: 10.1021/acssynbio.8b00289.
Yong, Khai Jie, Ta Yeong Wu, Cornelius Basil Tien Loong Lee, Zhi Jin Lee, Qinpu Liu,
Jamaliah Md Jahim, Qiaoqiao Zhou, and Lian Zhang. 2022. “Furfural production from
108 María J. Lozano, Nayda P. Arias Duque, Jairo Salcedo Mendoza et al.
biomass residues: Current technologies, challenges and future prospects.” Biomass
and Bioenergy 161:106458. doi: 10.1016/j.biombioe.2022.106458.
Zhang, Heng, Pau Cabañeros Lopez, Claire Holland, Alan Lunde, Morten Ambye-Jensen,
Claus Felby, and Sune Tjalfe Thomsen. 2018. “The multi-feedstock biorefinery –
Assessing the compatibility of alternative feedstocks in a 2G wheat straw biorefinery
process.” GCB Bioenergy 10 (12):946-959. doi: https://doi.org/10.1111/gcbb.12557.
Zhang, Ming, Li Xie, Zhixuan Yin, Samir Kumar Khanal, and Qi Zhou. 2016. “Biorefinery
approach for cassava-based industrial wastes: Current status and opportunities.”
Bioresource Technology 215:50-62. doi: https://doi.org/10.1016/j.biortech.2016.04.026.
Zhang, Xin, Kaili Nie, Yongli Zheng, Fang Wang, Li Deng, and Tianwei Tan. 2015.
“Enzymatic production and functional characterization of d-sorbitol monoesters with
various fatty acids.” Catalysis Communications 72:138-141. doi: https://doi.org/10.
1016/j.catcom.2015.09.010.
Zou, Caineng, Qun Zhao, Guosheng Zhang, and Bo Xiong. 2016. “Energy revolution: From
a fossil energy era to a new energy era.” Natural Gas Industry B 3:1-11. doi:
10.1016/j.ngib.2016.02.001.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!