Chapter 18. Trehalose Biosynthesis: Neutralizing Fungal Menace by Attacking Its Achilles Heel


Rayne S. S. Magalhães, Renata M. dos Santos and Elis C. A. Eleutherio
Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro,Brazil

Part of the book: The Book of Fungal Pathogens


Trehalose is a disaccharide synthesized in a wide range of organisms as a form of protection against adverse environmental factors, including oxidative, acidic, osmotic, or nutritional stresses. This sugar is involved in sporulation, germination, metabolism, and morphogenesis. Trehalose synthesis has been associated with fungal virulence, which is outstanding because the identification of specific drug targets essential for fitness of fungi is still a goal of medical microbiology research. Antimycotics are scarce and cause serious side effects in humans because fungi and mammalian cells share cellular structures and biochemical processes. Since humans are not able to synthesize trehalose, probably inhibitors or drugs directed toward trehalose biosynthesis of the pathogen would have little toxicity for the host. Therefore, it is of great interest to elucidate the trehalose biosynthetic pathway in pathogenic fungi with the aim to develop new effective strategies to treat fungal infections. In this chapter we address the biological roles of trehalose and the regulation of its synthesis in fungi, as we also evaluate the structure of the proteins involved in trehalose synthesis providing a deeper understanding of the area which may offer the basisfor the design of novel antifungal compounds.

Keywords: antimycotics, trehalose, TPS, TPP


Alanio, A., (2020). Dormancy in Cryptococcus neoformans: 60 years of accumulating evidence. J. Clin. Invest.
130, 3353–60.
Al-Bader, N., Vanier, G., Liu, H., Gravelat, F., Urb, M., Hoareau, C., Campoli, P., Chabot, J., Filler, S.,
Sheppard, D. (2010). Role of trehalose biosynthesis in Aspergillus fumigatus development, stress
response, and virulence. Infect. Immun. 78.
Almeida-Paes, R., de Oliveira, M., Freitas, D., do Valle, A., Zancopé-Oliveira,R., Gutierrez-Galhardo, M.
(2014). Sporotrichosis in Rio de Janeiro, Brazil: Sporothrix brasiliensis is associated with atypical clinical
presentations. PLoS Negl. Trop. Dis. 8, e3094.
Arraes, Fabrício B. M., Bruno Benoliel, Rafael T. Burtet, Patrícia L. N. Costa, Alexandro S. Galdino, Luanne
H. A. Lima, Camila Marinho-Silva, Luciana Oliveira-Pereira, Pollyanna Pfrimer, Luciano Procópio-Silva,
Viviane Castelo-Branco Reis, Maria Sueli S. Felipe (2005). General metabolism of the dimorphic and
pathogenic fungus Paracoccidioides brasiliensis. Genet. Mol. Res.4, 290-308.
Ashraf, N., Kubat, R. C., Poplin, V., Adenis, A. A., Denning, D. W., Wright, L., McCotter, O., Schwartz, I. S.,
Jackson, B. R., Chiller, T., & Bahr, N. C. (2020). Re-drawing the maps for endemic mycoses.
Mycopathologia 185, 843–65.
Avonce, N., Mendoza-Vargas, A., Morett, E. and Iturriaga, G. (2006). Insights on the evolution of trehalose
biosynthesis. BMC Evol. Biol. 6, 109.
Bell, W., Klassen, P., Ohnacker, M., Boller, T., Herweijer, M., Schoppink, P., Vanderzee, P., Wiemken, A.
(1992). Characterization of the 56-KDa subunit of yeast Trehalose-6-Phosphate Synthase and cloning of
its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur.J.
Biochem 209, 951–59.
Bell, W., Sun, W., Hohmann, S., Wera, S., Reinders, A., de Virgilio, C., Wiemken, A., Thevelein, J. (1998).
Composition and functional analysis of the Saccharomyces cerevisiae Trehalose Synthase Complex. J.
Biol. Chem 273, 33311–19.
Blázquez, M., Lagunas, R., Gancedo, C., Gancedo, J. (1993). Trehalose-6-Phosphate, a new regulator of yeast
glycolysis that inhibits hexokinases. FEBS Lett. 329, 51–54.
Bonini, B., Van Vaeck, C., Larsson, C., Gustafsson, L., Ma, P., Winderickx, J., Van Dijck, P., Thevelein, J.
(2000). Expression of Escherichia coli OtsA in a Saccharomyces cerevisiae Tps1 mutant restores
trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of
glucose influx into glycolysis. Biochem. J. 350, 261–68.
Borges, C., Bailão, A., Báo, S., Pereira, M., Parente, J., de Almeida Soares, C. (2011). Genes potentially
relevant in the parasitic phase of the fungal pathogen Paracoccidioides brasiliensis.
Mycopathologia 171, 1-9.
Botts, M., Huang, M., Borchardt, R., Hull, C. (2014). Developmental cell fate and virulence are linked to
trehalose homeostasis in Cryptococcus neoformans. Eukaryot. Cell 13, 1158–68.
Boudreau, B., Larson, T., Brown, D., Busman, M., Roberts, E., Kendra D., McQuade, K. (2013). Impact of
temperature stress and Validamycin A on compatible solutes and fumonisin production in F.
Verticillioides: role of Trehalose-6-Phosphate Synthase. Fungal Genet. Biol. 57, 1–10.
Burroughs, A., Allen, K., Dunaway-Mariano, D., Aravind, L. (2006). Evolutionary genomics of the HAD
superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of
phosphoesterases and allied enzymes. J. Mol. Biol. 361, 1003–34.
Cabib, E., Leloir, L. (1958). The biosynthesis of trehalose phosphate. J. Biol. Chem. 231, 259–75.
Chen, S., Sorrell, T. (2007). Antifungal agents. Med. J. Aust. 187, 404–9.
Dijck, P., Rop, L., Szlufcik, K., Ael, E., Thevelein, J. (2002). Disruption of the Candida albicans TPS2 gene
encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation.
Infect. Immun. 70, 1772–82.
Elbein, A., Pan, Y., Pastuszak, I., Carroll, D. (2003). New insights on trehalose: a multifunctional molecule.
Glycobiology 13, 17R-27R.
Eleutherio, E., Panek, A., de Mesquita, J., Trevisol, E., Magalhães, R. (2015). Revisiting yeast trehalose
metabolism. Curr. Genet. 61, 263–74.
Errey, J., Lee, S., Gibson, R., Martinez Feliter, C., Barry, C., Jung, P., O’Sullivan, A, Davis, B., Davies, G.
(2010). Mechanistic insight into enzymatic glycosyl transfer with retention of configuration through
analysis of glycomimetic inhibitors. Angew. Chem. Int.Ed. 49, 1234–37.
Gancedo, C., Flores, C. (2004). The importance of a functional trehalose biosynthetic pathway for the life of
yeasts and fungi. FEMS Yeast Res. 4, 351–59.
Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M., Storz, G., Botstein, D., Brown, P. (2000).
Genomic expression programs in the response of yeast cells to environmental changes.
Mol. Biol. Cell 11, 4241–57.
Giacomazzi, J., Baethgen, L., Carneiro, L., Millington, M., Denning, D., Colombo, A., Pasqualotto, A. (2016).
The burden of serious human fungal infections in Brazil. Mycoses 59, 145–50.
Gonçalves, L., Trevisol, E., Azevedo Abrahim Vieira, B., de Mesquita, J. (2020). Trehalose synthesis inhibitor:
a molecular in silico drug design. J. Cell. Biochem. 121, 1114–25.
Guirao-Abad, J., Pujante, V., Sánchez-Fresneda, R., Yagüe, G., Argüelles, J. (2019). Sensitivity of the Candida
albicans trehalose-deficient mutants tps1 and tps2 to Amphotericin B and Micafungin.
J. Med. Microbiol. 68, 1479–1488.
Himmelreich, U., Dzendrowskyj, T., Allen, C., Dowd, S., Malik, R., Shehan, B., Russell, P., Mountford, C.,
Sorrell, T. (2001). Cryptococcomas distinguished from gliomas with MR Spectroscopy: an experimental
rat and cell culture study. Radiology 220, 122-128.
Hoenigl, M. (2021). Invasive fungal disease complicating coronavirus disease 2019: when it rains, it spores.
Clin. Infect. Dis. 73, e1645–48.
Iturriaga, G., Suárez, R., Nova-Franco, B. (2009). Trehalose metabolism: from osmoprotection to signaling.
Int. J. Mol. Sci. 10, 3793–3810.
Kachroo, A., Laurent, J., Yellman, C., Meyer, A., Wilke, C., Marcotte, E. (2015). Systematic humanization of
yeast genes reveals conserved functions and genetic modularity. Science 348, 921–25.
Lahiri, S., Banerjee, S., Dutta, T., Sengupta, S., Dey, S., Roy, R., Sengupta, D., Chattopadhyay, K. and Ghosh,
A. (2014). Enzymatic and regulatory attributes of trehalose-6-phosphate phosphatase from Candida utilis
and its role during thermal stress. J. Cell. Physiol 229, 1245-1255.
Liu, C., Chen, F., Zhang, J., Liu, L., Lei, H., Li, H, Wang, Y., Liao, Y., Tang, H. (2019). Metabolic changes of
Fusarium graminearum induced by TPS gene deletion. J. Proteome Res. 18, 3317–3327.
Lunn, J., Delorge, I., Figueroa, C., Van Dijck, T., Stitt, M. (2014).
Trehalose metabolism in plants. Plant J. 79, 544–67.
Magalhães, R., de Lima, K., de Almeida, D., de Mesquita, J., Eleutherio, E. (2017). Trehalose-6-Phosphate as
a potential lead candidate for the development of Tps1 inhibitors: insights from the trehalose biosynthesis
pathway in diverse yeast species. Appl. Biochem. Biotechnol 181, 914–24.
Magalhães, R., Popova, B., Braus, G., Outeiro, T. and Eleutherio, E. (2018). The Trehalose protective
mechanism during thermal stress in Saccharomyces cerevisiae:
the roles of Ath1 and Agt1. FEMS Yeast Res. 18, foy066.
Maidan, M., De Rop, L., Relloso, M., Diez-Orejas, R., Thevelein, J., Van Dijck, P. (2008). Combined
inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for
systemic infection. Infect. Immun. 76, 1686-1694.
Manikandan, P., Abdel-hadi, A., Randhir Babu Singh, Y., Revathi, R., Anita, R., Banawas, S., Bin Dukhyil,
A. A., Alshehri, B., Shobana, C. S., Panneer Selvam, K., & Narendran, V. (2019). Fungal keratitis:
epidemiology, rapid detection, and antifungal susceptibilities of Fusarium and Aspergillus isolates from
corneal scrapings. BioMed Res. Int. 2019, 1–9.
Marcos, C., de Oliveira, H., de Melo W., da Silva, J., Assato, P., Scorozni, L., Rossi, S., de Paula e Silva, A.,
Mendes-Giannini, M., Fusco-Almeida, A. (2016). Anti-Immune strategies of pathogenic fungi.
Front. Cell Infect. Microbiol. 6, 142.
Martínez-Esparza, M., Martinez-Vicente, E., Gonzáles-Párraga, P., Ros, J., García-Peñarrubia, P., Argüelles,
J. (2009). Role of Trehalose-6P Phosphatase (TPS2) in stress tolerance and resistance to macrophage
killing in Candida albicans. Int. J. Med. Microbiol. 299, 453–64.
Miao, Y., Tenor, J., Toffaletti, D., Maskarinec, S., Liu, J., Lee, R., Perfect, J., Brennan, R. (2017). Structural
and in vivo studies on trehalose-6-phosphate synthase from pathogenic fungi provide insights into its
catalytic mechanism, biological necessity, and potential for novel antifungal drug design. mBio 8, e00643-17.
Miao, Y., Tenor, J., Toffaletti, D., Washington, E., Liu, J., Shadrick, W., Schumacher, M., Lee, R., Perfect, J.,
Brennan, R. (2016). Structures of Trehalose-6-Phosphate Phosphatase from pathogenic fungi reveal the
mechanisms of substrate recognition and catalysis. PNAS 113, 7148–53.
Ngamskulrungroj, P., Himmelreich, U., Breger, J. A., Wilson, C., Chayakulkeeree, M., Krockenberger, M. B.,
Malik, R., Daniel, H.-M., Toffaletti, D., Djordjevic, J. T., Mylonakis, E., Meyer, W., & Perfect, J.
R.(2009). The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus
gattii. Infect. Immun. 77 4584-4596.
O’Neill, M., Piligian, B., Olson, C., Woodruff, P., Swarts, B. (2017). Tailoring trehalose for biomedical and
biotechnological applications. Pure Appl. Chem. 89, 1223–1249.
Ortiz, C., Maia, J., Tenan, M., Braz-Padrão, G., Mattoon,J., Panek, A. (1983). Regulation of yeast trehalase by
a monocyclic, cyclic AMP-Dependent Phosphorylation-Dephosphorylation cascade system.
J. Bacteriol. 153, 644–51.
Panneman, H., Ruijter, G., van den Broeck, H., Visser, J. (1998). Cloning and biochemical characterisation of
Aspergillus niger hexokinase, the enzyme is strongly inhibited by physiological concentrations of
Trehalose 6-Phosphate. Eur.J. Biochem 258, 223–32.
Paul, M., Primavesi, L., Jhurreea, D., Zhang, Y. (2008). Trehalose metabolism and signaling.
Annu. Rev. Plant Biol. 59, 417–41.
Perfect, J., Tenor, J., Miao, Y., Brennan, R. G. (2017). Trehalose pathway as an antifungal target.
Virulence 8, 143-149.
Petzold, E., Himmelreich, U., Mylonakis, E., Rude, T., Toffaletti, D., Cox, G., Miller, J., Perfect, J. (2006).
Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity
of Cryptococcus neoformans. Infect. Immun. 74, 5877-87.
Pfaller, M., Messer,S., Rhomberg, P., Castanheira, M. (2017). Activity of a long-acting echinocandin (cd101)
and seven comparator antifungal agents tested against a global collection of contemporary invasive fungal
isolates in the SENTRY 2014 Antifungal Surveillance Program.
Antimicrob. Agents Chemother. 61, e02045-16.
Polak, A., Scholer, H. (1975). Mode of action of 5-fluorocytosine and mechanisms of resistance.
Chemotherapy 21, 113–30.
Puttikamonkul, S., Willger,S., Grahl, N., Perfect, J., Movahed, N., Bothner, B., Park, S., Paderu,P., Perlin, D.,
Cramer Jr, R. (2010). Trehalose 6-Phosphate Phosphatase is required for cell wall integrity and fungal
virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus. Mol.
Microbiol, 77, 891-911.
Sarma, S., Upadhyay, S. (2017). Current perspective on emergence, diagnosis and drug resistance in Candida
auris. Infect. Drug Resist. 10, 155–65.
Sephton-Clark, P., Muñoz, J., Ballou, E., Cuomo, C., Voelz, K. (2018). Pathways of pathogenicity:
transcriptional stages of germination in the fatal fungal pathogen Rhizopus delemar. Mol. Biol. Physiol.
3, e00403-18.
Serneels, J., Tournu, H., van Dijck, P. (2012). Tight control of trehalose content is required for efficient
heat induced cell elongation in Candida albicans. J. Biol. Chem. 287, 36873-82.
Shao, P., Huang, L., Hsueh, P. (2007). Recent advances and challenges in the treatment of invasive fungal
infections. Int. J. Antimicrob 30, 487–95.
Siscar-Lewin, S., Hube, B., Brunke, S. (2019). Antivirulence and avirulence genes in human pathogenic fungi.
Virulence 10, 935-947.
Smallbone, K., Malys, N., Messiha, H., Wishart, J., Simeonidis, E. (2011). Building a kinetic model of trehalose
biosynthesis in Saccharomyces cerevisiae. Meth. Enzymol 500, 355–70.
Sokulska, M., Kicia, M., Wesołowska, M., Hendrich, A. (2015). Pneumocystis jirovecii-from a commensal to
pathogen: clinical and diagnostic review. Parasitology 114, 3577–85.
Song, X.-S., Li, H.-P., Zhang, J.-B., Song, B., Huang, T., Du, X.-M., Gong, A.-D., Liu, Y.-K., Feng, Y.-N.,
Agboola, R. S., & Liao, Y.-C. (2014). Trehalose 6-Phosphate Phosphatase is required for development,
virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum.
Fungal Genet. Biol. 63, 24-41.
Thammahong, A., Caffrey-Card, A., Dhingra,A., Obar,J., Cramer, R. (2017). Aspergillus fumigatus trehalose
regulatory subunit homolog moonlights to mediate cell wall homeostasis through
modulation of chitin synthase activity. mBio8, e00056-17.
Thammahong, A., Dhingra, S., Bultman, K., Kerkaert,J., Cramer, R. (2019). An Ssd1 Homolog Impacts
Trehalose and Chitin Biosynthesis and Contributes to Virulence in Aspergillus Fumigatus. mSphere 4,
e00244-19 (3).
Thammahong, A., Puttikamonkul, S., Perfect, J., Brennan, R.,Cramer, R. (2017). Central role of the trehalose
biosynthesis pathway in the pathogenesis of human fungal infections: opportunities and challenges for
therapeutic development. Microbiol. Mol. Biol. Rev. 81, e00053-16.
Thevelein, J. (1984). Regulation of trehalose mobilization in fungi. Microbiol. Rev. 48, 42–59.
Tournu, H., Fiori, A.,Van Dijck, P. (2013). Relevance of trehalose in pathogenicity: some general rules, yet
many exceptions. PLoS Pathog. 9, e1003447.
Trevisol, E., Panek, A., de Mesquita, J., Eleutherio, E. (2014). Regulation of the yeast trehalose-synthase
complex by cyclic AMP-dependent phosphorylation. Biochim. Biophys. Acta – Gen. Subj. 1840, 1646–50.
Vanaporn, M., Titball, R. (2020). Trehalose and bacterial virulence. Virulence 11, 1192–1202.
Vandercammen, A., François, J., Hers, H. (1989). Characterization of Trehalose-6-Phosphate Synthase and
Trehalose-6-Phosphate Phosphatase of Saccharomyces cerevisiae.Eur. J. Biochem. 182, 613-20.
Vicente, R., Spina, L., Gómez, J., Dejean, S., Parrou, J., François, J. (2018). Trehalose-6-Phosphate promotes
fermentation and glucose repression in Saccharomyces cerevisiae. Microbial Cell 5, 444–59.
Voit, E. (2003). Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations
and canonical model analysis. J. Theor. Biol. 223, 55–78.
Xu, C., Chen, H., Wu, Q., Wu, Y., Daly, P., Chen, J., Yang, H., Wei, L., Zhuang, Y. (2021). Trehalose-6-
Phosphate Phosphatase inhibitor: N-(Phenylthio) Phthalimide, which can inhibit the don biosynthesis of
Fusarium graminearum. Pestic. Biochem. Physiol. 178, 104917.
Yoneyama, Y., Lever, J. (1987). Apical trehalase expression associated with cell patterning after inducer
treatment of LLC-PK1 monolayers. J. Cell. Physiol 131, 330–41.
Zaragoza, O., Blazquez, M., Gancedo, C. (1998). Disruption of the Candida albicans TPS1 gene encoding
trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity.
J. Bacteriol. 180, 3809-3815.
Zaragoza, O., de Virgilio, C., Pontón, J., Gancedo, C. (2002). Disruption in Candida albicans of the TPS2 gene
encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity.
Microbiology 148, 1281–1290.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!