Chapter 14. Mycobiota Dysbiosis in Immune-Associated Pathologies


Fabianno Ferreira Dutra
Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, Brasil

Part of the book: The Book of Fungal Pathogens


The evolution between mammalian hosts and their microbiota developed reciprocal interactions which provides benefits for both sides of this relationship. In this context, the fungi community is part of a group of salutary microbes that maintain tissues and physiological processes healthy. A relevant part of this interaction involves modulation of immunity. Thus, dysbiosis can destabilize homeostasis and contribute to immune-mediated pathologies. In fact, clinical data has demonstrated that changes in the mycobiota correlates with the development of inflammatory diseases. Moreover, several mouse models have corroborated human findings and are relevant to understand the mechanisms involved. On the other hand, dysbiosis can lead to the proliferation of fungi with pathogenic potential which can contribute to diseases that are not originally fungal. This chapter will discuss different levels and mechanisms of communication between mycobiota and immune cells in several sites, the fungal alterations observed in pathologies and how they correlate.

Keywords: microbiota, mycobiome, mycobiota, mycobiome, dysbiosis, inflammation,
mucosal immunology, inflammatory diseases


[1] Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease.
Cell Res. 2020 Jun;30[6]:492–506.
[2] Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD. Archaea and
Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents.
PLoS One. 2013 Jun 17;8[6]:e66019.
[3] Strati F, Di Paola M, Stefanini I, Albanese D, Rizzetto L, Lionetti P, Calabro A, Jousson O, Donati C,
Cavalieri D, De Filippo C. Age and Gender Affect the Composition of Fungal Population of the Human
Gastrointestinal Tract. Front Microbiol. 2016 Aug 3;7:1227.
[4] Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA, Muzny
DM, Gibbs RA, Ajami NJ, Petrosino JF. The gut mycobiome of the Human Microbiome Project
healthy cohort. Microbiome. 2017 Nov 25;5[1]:153.
[5] Raimondi S, Amaretti A, Gozzoli C, Simone M, Righini L, Candeliere F, Brun P, Ardizzoni A,
Colombari B, Paulone S, Castagliuolo I, Cavalieri D, Blasi E, Rossi M, Peppoloni S. Longitudinal
Survey of Fungi in the Human Gut: ITS Profiling, Phenotyping, and Colonization.
Front Microbiol. 2019 Jul 10;10:1575.
[6] Charlson ES, Diamond JM, Bittinger K, Fitzgerald AS, Yadav A, Haas AR, Bushman FD, Collman R.
Lung-enriched Organisms and Aberrant Bacterial and Fungal Respiratory Microbiota after Lung
Transplant. Am J Respir Crit Care Med. 2012 Sep 15;186[6]:536–45.
[7] van Woerden HC, Gregory C, Brown R, Marchesi JR, Hoogendoorn B, Matthews IP. Differences in
fungi present in induced sputum samples from asthma patients and non-atopic controls: a community
based case control study. BMC Infect Dis. 2013 Dec;13[1]:69.
[8] Cui L, Lucht L, Tipton L, Rogers MB, Fitch A, Kessinger C, Camp D, Kingsley L, Leo N, Greenblatt
RM, Fong S, Stone, S, Dermand JC, Kleerup EC, Huang L, Morris A, Ghedin E. Topographic Diversity
of the Respiratory Tract Mycobiome and Alteration in HIV and Lung Disease.
Am J Respir Crit Care Med. 2015 Apr 15;191[8]:932–42.
[9] Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer J, Schoenfeld D, Nomicos E, Park M, Kong HH,
Segre JA. Topographic diversity of fungal and bacterial communities in human skin.
Nature. 2013 Jun;498[7454]:367–70.
[10] Oh J, Byrd AL, Deming C, Conlan S, Kong HH, Segre JA. Biogeography and individuality shape
function in the human skin metagenome. Nature. 2014 Oct;514[7520]:59–64.
[11] Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM.
Characterization of the Oral Fungal Microbiome [Mycobiome] in Healthy Individuals.
PLoS Pathog. 2010 Jan 8;6[1]:e1000713.
[12] Drell T, Lillsaar T, Tummeleht L, Simm J, Aaspõllu A, Väin E, Saarma I, Salumets A, Donders GGG,
Metsis M. Characterization of the Vaginal Micro- and Mycobiome in Asymptomatic Reproductive Age
Estonian Women. PLoS One. 2013 Jan 23;8[1]:e54379.
[13] Jo JH, Deming C, Kennedy EA, Conlan S, Polley EC, Ng W, Segre JA, Kong HH. Diverse human skin
fungal communities in children converge in adulthood. J Invest Dermatol. 2016 Dec;136[12]:2356–63.
[14] Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota
and immune system. Nature. 2012 Sep;489[7415]:231–41.
[15] Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals
to their commensal intestinal microbiota. Semin Immunol. 2007 Apr;19[2]:59–69.
[16] Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, Whitt J, Alenghat T, Way SS.
Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria.
Cell Host Microbe. 2017 Dec;22[6]:809-816.e4.
[17] Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease.
N Engl J Med. 2016 Dec 15;375[24]:2369–79.
[18] Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities.
Proc Natl Acad Sci USA. 2008 Aug 12;105:11512–9.
[19] Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota
influences health and disease. Nat Rev Microbiol. 2017 Oct;15[10]:630–8.
[20] Kim SH, Clark ST, Surendra A, Copeland JK, Wang PW, Ammar R, Collins C, Tullis DE, Nislow C,
Hwang DM, Guttman DS, Cowen LE. Global Analysis of the Fungal Microbiome in Cystic Fibrosis
Patients Reveals Loss of Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen
Adaptation. PLoS Pathog. 2015 Nov 20;11[11]:e1005308.
[21] Iliev ID, Leonardi I. Fungal dysbiosis: immunity and interactions at mucosal barriers.
Nat Rev Immunol. 2017 Oct;17[10]:635–46.
[22] Belkaid Y, Harrison OJ. Homeostatic Immunity and the Microbiota.
Immunity. 2017 Apr 18;46[4]:562–76.
[23] Ruff WE, Greiling TM, Kriegel MA. Host–microbiota interactions in immune-mediated diseases. Nat
Rev Microbiol. 2020 Sep;18[9]:521–38.
[24] Kumamoto CA. The Fungal Mycobiota: Small Numbers, Large Impacts.
Cell Host Microbe. 2016 Jun;19[6]:750–1.
[25] Mogilnicka I, Ufnal M. Gut Mycobiota and Fungal Metabolites in Human Homeostasis. Curr Drug
Targets. 2018 Dec 19;20[2]:232–40.
[26] Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and
pathology. EMBO Mol Med. 2013 Oct;5[10]:1465–83.
[27] Wu Y, Wang CZ, Wan JY, Yao H, Yuan CS. Dissecting the Interplay Mechanism between Epigenetics
and Gut Microbiota: Health Maintenance and Disease Prevention.
Int J Mol Sci. 2021 Jun 28;22[13]:6933.
[28] Amornphimoltham P, Yuen PST, Star RA, Leelahavanichkul A. Gut Leakage of Fungal-Derived
Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis. Dig Dis Sci. 2019
[29] Kuhn KA, Stappenbeck TS. Peripheral education of the immune system by the colonic microbiota.
Semin Immunol. 2013 Nov;25[5]:364–9.
[30] Kobayashi N, Takahashi D, Takano S, Kimura S, Hase K. The Roles of Peyer’s Patches and Microfold
Cells in the Gut Immune System: Relevance to Autoimmune Diseases.
Front Immunol. 2019 Oct 9;10:2345.
[31] Stagg AJ. Intestinal Dendritic Cells in Health and Gut Inflammation.
Front Immunol. 2018 Dec 6;9:2883.
[32] Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments.
Mucosal Immunol. 2017 Nov;10[6]:1361–74.
[33] Pabst O, Slack E. IgA and the intestinal microbiota: the importance of being specific. Mucosal
Immunol. 2020 Jan;13[1]:12–21.
[34] Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal
macrophage function via histone deacetylase inhibition.
Proc Natl Acad Sci USA. 2014 Feb 11;111[6]:2247–52.
[35] Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM,
Smith PD. Human intestinal macrophages display profound inflammatory anergy despite avid
phagocytic and bacteriocidal activity. J Clin Invest. 2005 Jan 3;115[1]:66–75.
[36] Chang SY, Ko HJ, Kweon MN. Mucosal dendritic cells shape mucosal immunity.
Exp Mol Med. 2014 Mar;46[3]:e84–e84.
[37] Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, Suzuki S, Shaw MH, Kim Y, Núñez G.
NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and
promotes host intestinal defense. Nat Immunol. 2012 May;13[5]:449–56.
[38] Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of Commensal
Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis.
Cell. 2004 Jul 23;118[2]:229–41.
[39] Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. Microbiome Dependent
Regulation of Tregs and Th17 Cells in Mucosa. Front Immunol. 2019 Mar 8;10:426.
[40] Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis.
Front Immunol. 2020 Jan 14;10:3100.
[41] Li J, Casanova JL, Puel A. Mucocutaneous IL-17 immunity in mice and humans: host defense vs.
excessive inflammation. Mucosal Immunol. 2018 May;11[3]:581–9.
[42] Mann ER, Li X. Intestinal antigen-presenting cells in mucosal immune homeostasis: Crosstalk between
dendritic cells, macrophages and B-cells. World J Gastroenterol. 2014 Aug 7;20[29]:9653–64.
[43] Lee N, Kim WU. Microbiota in T-cell homeostasis and inflammatory diseases.
Exp Mol Med. 2017 May;49[5]:e340–e340.
[44] Bernardo D, Marin AC, Fernández-Tomé S, Montalban-Arques A, Carrasco A, Tristán E, Ortega Moreno L, Mora-Gutiérrez I, Díaz-Guerra A, Caminero-Fernández R, Miranda P, Casals F, Caldas M,
Jiménez M, Casabona S, De la Morena F, Esteve M, Santander C, Chaparro M, Gisbert JP. Human
intestinal pro-inflammatory CD11chighCCR2+CX3CR1+ macrophages, but not their tolerogenic
counterparts, are expanded in inflammatory bowel disease. Mucosal
Immunol. 2018 Jul;11[4]:1114–26.
[45] Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, Bar A, Prieto D, Rescigno M, McGovern DPB,
Pla J, Iliev ID. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi.
Science. 2018 Jan 12;359[6372]:232–6.
[46] Li XV, Leonardi I, Putzel GG, Semon A, Fiers WD, Kusakabe T, Lin W, Gao IH, Doron I, Gutierrez Guerrero A,
DeCelie MB, Carriche GM, Mesko M, Yang C, Naglik JR, Hube B, Scherl EJ, Iliev ID.
Immune regulation by fungal strain diversity in inflammatory bowel disease.
Nature. 2022 Mar; 16:1–7.
[47] Hoces D, Arnoldini M, Diard M, Loverdo C, Slack E. Growing, evolving and sticking in a flowing
environment: understanding IgA interactions with bacteria in the gut.
Immunology. 2020 Jan;159[1]:52–62.
[48] Goguyer-Deschaumes R, Waeckel L, Killian M, Rochereau N, Paul S. Metabolites and secretory
immunoglobulins: messengers and effectors of the host–microbiota intestinal equilibrium.
Trends Immunol. 2022 Jan 1;43[1]:63–77.
[49] Doron I, Mesko M, Li XV, Kusakabe T, Leonardi I, Shaw DG, Fiers WD, Lin W, Bialt-DeCelie M,
Román E, Longman RS, Pla J, Wilson PC, Iliev ID. Mycobiota-induced IgA antibodies regulate fungal
commensalism in the gut and are dysregulated in Crohn’s disease.
Nat Microbiol. 2021 Dec;6[12]:1493–504.
[50] Ost KS, O’Meara TR, Stephens WZ, Chiaro T, Zhou H, Penman J, Bell R, Catanzaro JR, Song D,
Singh S, Call DH, Hwang-Wong E, Hanson KE, Valentine JF, Christensen KA, O’Connell RM,
Cormack B, Ibrahim AS, Palm NW, Noble SM, Round JL. Adaptive immunity induces mutualism
between commensal eukaryotes. Nature. 2021 Aug 5;596[7870]:114–8.
[51] Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang
S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL. Gut Immune Maturation
Depends on Colonization with a Host-Specific Microbiota. Cell. 2012 Jun;149[7]:1578–93.
[52] Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, Déjardin F, Sparwasser T, Bérard M,
Cerf-Bensussan N, Eberl G. A Weaning Reaction to Microbiota Is Required for Resistance to
Immunopathologies in the Adult. Immunity. 2019 May;50[5]:1276-1288.e5.
[53] Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes
the immune system. Science. 2016 Apr 29;352[6285]:539–44.
[54] Boutin RCT, Sbihi H, McLaughlin RJ, Hahn AS, Konwar KM, Loo RS, Dai D, Petersen C, Brinkman
FSL, Winsor GL, Sears MR, Moraes TJ, Becker AB, Azad MB, Mandhane PJ, Subbarao P, Turvey
SE, Finlay BB. Composition and Associations of the Infant Gut Fungal Microbiota with Environmental
Factors and Childhood Allergic Outcomes. mBio. 2021 Jun 29;12[3]:e0339620.
[55] van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin
JB, Vicentini FA, Keenan CM, Ramay HR, Samara J, MacNaughton WK, Wilson RJA, Kelly MM,
McCoy KD, Sharkey KA, Arrieta M. Intestinal fungi are causally implicated in microbiome assembly
and immune development in mice. Nat Commun. 2020 Dec;11[1]:2577.
[56] Zhang Z, Li J, Zheng W, Zhao G, Zhang H, Wang X, Guo Y, Qin C, Shi Y. Peripheral Lymphoid
Volume Expansion and Maintenance Are Controlled by Gut Microbiota via RALDH+ Dendritic Cells.
Immunity. 2016 Feb;44[2]:330–42.
[57] Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G. Lymphoid tissue genesis
induced by commensals through NOD1 regulates intestinal homeostasis.
Nature. 2008 Nov;456[7221]:507–10.
[58] Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY,
Chan FKL, Sung JJY, Kaplan GG. Worldwide incidence and prevalence of inflammatory bowel disease
in the 21st century: a systematic review of population-based studies.
The Lancet. 2017 Dec 23;390[10114]:2769–78.
[59] Chehoud C, Albenberg LG, Judge C, Hoffmann C, Grunberg S, Bittinger K, Baldassano RN, Lewis
JD, Bushman FD, Wu GD. Fungal Signature in the Gut Microbiota of Pediatric Patients With
Inflammatory Bowel Disease. Inflamm Bowel Dis. 2015 Aug;21[8]:1948–56.
[60] Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, Neut C, Vermeire
S, Clemente J, Colombel JF, Fujioka H, Poulain D, Sendid B, Ghannoum MA, Bonomo RA.
Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn’s Disease.
mBio. 2016 Sep 20;7[5]:e01250-16.
[61] Jain U, Ver Heul AM, Xiong S, Gregory MH, Demers EG, Kern JT, Lai C, Muegge BD, Barisas DAG,
Leal-Ekman JS, Deepak P, Ciorba MA, Liu T, Hogan DA, Debbas P, Braun J, McGovern DPB,
Underhill DM, Stappenbeck TS. Debaryomyces is enriched in Crohn’s disease intestinal tissue and
impairs healing in mice. Science. 2021 Mar 12;371[6534]:1154–9.
[62] Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, Bittinger K, Bailey A, Friedman
ES, Hoffman C, Albenberg L, Sinha R, Compher C, Gilroy E, Nessel L, Grant A, Chehoud C, Li H,
Wu GD, Bushman FD. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut
Microbiome in Pediatric Crohn’s Disease. Cell Host Microbe. 2015 Oct;18[4]:489–500.
[63] Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of Gut Fungal Microbiota is Associated With
Mucosal Inflammation in Crohn’s Disease. Journal of Clinical Gastroenterology.
2014 Jul;48[6]:513–23.
[64] Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, Di Simone MP, Calabrese C,
Poggioli G, Langella P, Campieri M, Sokol H. Fungal Dysbiosis in Mucosa-associated Microbiota of
Crohn’s Disease Patients. J Crohns Colitis. 2016 Mar;10[3]:296–305.
[65] Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, Funari V, Gargus M, Nguyen C, Sharma P, Maymi
VI, Iliev ID, Skalski JH, Brown J, Landers C, Borneman J, Braun J, Targan SR, McGovern DPB,
Underhill DM. Malassezia Is Associated with Crohn’s Disease and Exacerbates Colitis in Mouse
Models. Cell Host Microbe. 2019 Mar;25[3]:377-388.e6.
[66] Mar JS, LaMere BJ, Lin DL, Levan S, Nazareth M, Mahadevan U, Lynch SV, Blaser MJ. Disease
Severity and Immune Activity Relate to Distinct Interkingdom Gut Microbiome States in Ethnically
Distinct Ulcerative Colitis Patients. mBio. 2016, Sep 7;7[4].
[67] Ott SJ, Kühbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis
KN, Schreiber S. Fungi and inflammatory bowel diseases: Alterations of composition and diversity.
Scand J Gastroenterol. 2008 Jan;43[7]:831–41.
[68] Qiu X, Ma J, Jiao C, Mao X, Zhao X, Lu M, Wang K, Zhang H. Alterations in the mucosa-associated
fungal microbiota in patients with ulcerative colitis. Oncotarget. 2017 Dec 8;8[64]:107577–88.
[69] Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A,
Nion-Larmurier I, Cosnes J, Seksik P, Langella P, Skurnik D, Richard ML, Beaugerie L. Fungal
microbiota dysbiosis in IBD. Gut. 2017 Jun;66[6]:1039–48.
[70] Halwachs B, Madhusudhan N, Krause R, Nilsson RH, Moissl-Eichinger C, Högenauer C, Thallinger
GG, Gorkiewicz G. Critical Issues in Mycobiota Analysis. Front Microbiol. 2017 Feb 14;8:108.
[71] Chiaro TR, Soto R, Zac Stephens W, Kubinak JL, Petersen C, Gogokhia L, Bell R, Delgado JC, Cox
J, Voth W, Brown J, Stillman DJ, O’Connell RM, Tebo AE, Round JL. A member of the gut mycobiota
modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med.
2017 Mar  8;9[380]:eaaf9044.
[72] Spatz M, Richard ML. Overview of the Potential Role of Malassezia in Gut Health and Disease. Front
Cell Infect Microbiol. 2020 May 26;10:201.
[73] Schaffer T, Müller S, Flogerzi B, Seibold-Schmid B, Schoepfer AM, Seibold F. Anti-Saccharomyces
cerevisiae mannan antibodies [ASCA] of Crohn’s patients crossreact with mannan from other yeast
strains, and murine ASCA IgM can be experimentally induced with Candida albicans.
Inflamm Bowel Dis. 2007 Nov;13[11]:1339–46.
[74] Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S, Röhmel J, Eschenhagen P,
Grehn C, Seidel K, Rickerts V, Lozza L, Stervbo U, Nienen M, Babel N, Milleck J, Assenmacher M,
Cornely OA, Ziegler M, Wisplinghoff H, Heine G, Worm M, Siegmund B, Maul J, Creutz P, Tabeling
C, Ruwwe-Glösenkamp C, Sander LE, Knosalla C, Brunke S, Hube B, Kniemeyer O, Brakhage AA,
Schwarz C, Scheffold A. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity
against Candida albicans. Cell. 2019 Mar;176[6]:1340-1355.e15.
[75] Main J, McKenzie H, Yeaman GR, Kerr MA, Robson D, Pennington CR, Parratt D. Antibody to
Saccharomyces cerevisiae [bakers’ yeast] in Crohn’s disease. BMJ. 1988 Oct 29;297[6656]:1105–6.
[76] Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, Freeman AF, Demidowich A,
Davis J, Turner ML, Anderson VL, Darnell DN, Welch PA, Kuhns DB, Frucht DM, Malech HL, Gallin
JI, Kobayashi SD, Whitney AR, Voyich JM, Musser JM, Woellner C, Schäffer AA, Puck JM,
Grimbacher B. STAT3 Mutations in the Hyper-IgE Syndrome.
N Engl J Med. 2007 Oct 18;357[16]:1608–19.
[77] Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry
M, Gumbleton M, Toulon A, Bodemer C, El-Baghdadi J, Whitters M, Paradis T, Brooks J, Collins M,
Wolfman NM, Al-Muhsen S, Galicchio M, Abel L, Picard C, Casanova JL. Chronic Mucocutaneous
Candidiasis in Humans with Inborn Errors of Interleukin-17 Immunity.
Science. 2011 Apr;332[6025]: 65–8.
[78] van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LAB, Gilissen C, Arts P,
Rosentul DC, Carmichael AJ, Smits-van der Graaf, CAA, Kullberg BJ, van der Meer JWN, Lilic D,
Veltman JA, Netea MG. STAT1 Mutations in Autosomal Dominant Chronic Mucocutaneous
Candidiasis. N Engl J Med. 2011 Jul 7;365[1]:54–61.
[79] Pawlak M, Ho AW, Kuchroo VK. Cytokines and transcription factors in the differentiation of CD4+ T
helper cell subsets and induction of tissue inflammation and autoimmunity.
Curr Opin Immunol. 2020 Dec;67:57–67.
[80] Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, Brown J, Funari VA, Wang HL, Crother
TR, Arditi DM, Underhill DM, Iliev ID. Immunological Consequences of Intestinal Fungal Dysbiosis.
Cell Host Microbe. 2016 Jun;19[6]:865–73.
[81] Di Martino L, De Salvo C, Buela KA, Hager C, Ghannoum M, Osme A, Butto L, Bamias G, Pizarro
TT, Cominelli F. Candida tropicalis Infection Modulates the Gut Microbiome and Confers Enhanced
Susceptibility to Colitis in Mice. Cell Mol Gastroenterol Hepatol. 2022 Jan 1;13[3]:901–23.
[82] Zhu LL, Zhao XQ, Jiang C, You Y, Chen XP, Jiang YY, Jia XM, Lin X. C-Type Lectin Receptors
Dectin-3 and Dectin-2 Form a Heterodimeric Pattern-Recognition Receptor for Host Defense against
Fungal Infection. Immunity. 2013 Aug 22;39[2]:324–34.
[83] Speakman EA, Dambuza IM, Salazar F, Brown GD. T Cell Antifungal Immunity and the Role of C Type Lectin Receptors. Trends Immunol. 2020 Jan 1;41[1]:61–76.
[84] Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T, D’Angelo C, Pierini A, Pitzurra
L, Falzetti F, Carotti A, Perruccio K, Latgé JP, Rodrigues F, Velardi A, Aversa F, Romani L, Carvalho
A. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in
hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms
of antifungal immunity. Blood. 2010 Dec 9;116[24]:5394–402.
[85] Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, Elbers CC, Johnson
MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morré SA, Vriend G,
Williams DL, Perfect JR, Joosten LAB, Wijmenga C, van der Meer JWM, Adema GJ, Kullberg BJ,
Brown GD, Netea MG. Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections. N Engl J
Med. 2009 Oct 29;361[18]:1760–7.
[86] Plantinga TS, van der Velden WJFM, Ferwerda B, van Spriel AB, Adema G, Feuth T, Donnelly JP,
Brown GD, Kullberg BJ, Blijlevens NMA, Netea MG. Early Stop Polymorphism in Human DECTIN 1 Is Associated with Increased Candida Colonization in Hematopoietic Stem Cell Transplant
Recipients. Clin Infect Dis. 2009 Sep 1;49[5]:724–32.
[87] Beaudoin M, Goyette P, Boucher G, Lo KS, Rivas MA, Stevens C, Alikashani A, Ladouceur M,
Ellinghaus D, Törkvist L, Goel G, Lagacé C, Annese V, Bitton A, Begun J, Brant SR, Bresso F, Cho
JH, Duerr RH, Halfvarson J, McGovern DPB, Radford-Smith G, Schreiber S, Schumm PL, Sharma Y,
Silverberg MS, Weersma RK, Quebec IBD Genetics Consortium; NIDDK IBD Genetics Consortium;
International IBD Genetics Consortium; D’Amato M, Vermeire S, Franke A, Lettre G, Xavier RJ, Daly
MJ, Rioux JD. Deep Resequencing of GWAS Loci Identifies Rare Variants in CARD9, IL23R and
RNF186 That Are Associated with Ulcerative Colitis. PLoS Genet. 2013 Sep 12;9[9]:e1003723.
[88] Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma
Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S,
Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen
V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Büning C, Cohain
A, Cichon S, D’Amato M, De Jong D, Devaney KL, Dubinsky ML, Edwards C, Ellinghaus D, Ferguson
LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A,
Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance
IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen
CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J,
Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De
Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H,
International IBD Genetics Consortium (IIBDGC); Silverberg MS, Annese V, Hakonarson H, Brant
SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S,
Barrett JC, Cho JH. Host–microbe interactions have shaped the genetic architecture of inflammatory
bowel disease. Nature. 2012 Nov;491[7422]:119–24.
[89] McGovern DPB, Gardet A, Törkvist L, Goyette P, Essers J, Taylor KD, Neale BM, Ong RTH, Lagacé
C, Li C, Green T, Stevens CR, Beauchamp C, Fleshner PR, Carlson M, D’Amato M, Halfvarson J,
Hibberd ML, Lördal M, Padyukov L, Andriulli A, Colombo E, Latiano A, Palmieri O, Bernard EJ,
Deslandres C, Hommes DW, de Jong DJ, Stokkers PC, Weersma RK, NIDDK IBD Genetics
Consortium; Sharma Y, Silverberg MS, Cho JH, Wu J, Roeder K, Brant SR, Schumm LP, Duerr RH,
Dubinsky MC, Glazer NL, Haritunians T, Ippoliti A, Melmed GY, Siscovick DS, Vasiliauskas EA,
Targan SR, Annese V, Wijmenga C, Pettersson S, Rotter JI, Xavier RJ, Daly MJ, Rioux JD, Seielstad
M. Genome-wide association identifies multiple ulcerative colitis susceptibility loci.
Nat Genet. 2010 Apr;42[4]:332–7.
[90] Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, Boucher G, Ripke S, Ellinghaus
D, Burtt N, Fennell T, Kirby A, Latiano A, Goyette P, Green T, Halfvarson J, Haritunians T, Korn JM,
Kuruvilla F, Lagacé C, Neale B, Lo KS, Schumm P, Törkvist L, National Institute of Diabetes and
Digestive Kidney Diseases Inflammatory Bowel Disease Genetics Consortium (NIDDK IBDGC);
United Kingdom Inflammatory Bowel Disease Genetics Consortium; International Inflammatory
Bowel Disease Genetics Consortium; Dubinsky MC, Brant SR, Silverberg MS, Duerr RH, Altshuler
D, Gabriel S, Lettre G, Franke A, D’Amato M, McGovern DPB, Cho JH, Rioux JD, Xavier RJ, Daly
MJ. Deep resequencing of GWAS loci identifies independent rare variants associated with
inflammatory bowel disease. Nat Genet. 2011 Nov;43[11]:1066–73.
[91] Zhernakova A, Festen EM, Franke L, Trynka G, van Diemen CC, Monsuur AJ, Bevova M, Nijmeijer
RM, van Slot R, Heijmans R, Boezen HM, van Heel DA, van Bodegraven AA, Stokkers PCF,
Wijmenga C, Crusis JBA, Weersma RK. Genetic Analysis of Innate Immunity in Crohn’s Disease and
Ulcerative Colitis Identifies Two Susceptibility Loci Harboring CARD9 and IL18RAP.
Am J Hum Genet. 2008 May;82[5]:1202–10.
[92] Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR,
Dubinsky M, Rotter JI, Wang HL, McGovern DPB, Brown GD, Underhill DM. Interactions Between
Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis. Science.
2012 Jun 8;336[6086]:1314–7.
[93] Cao Z, Conway KL, Heath RJ, Rush JS, Leshchiner ES, Ramirez-Ortiz ZG, Nedelsky NB, Huang H,
Ng A, Gardet A, Cheng SC, Shamji AF, Rioux JD, Wijmenga C, Netea MG, Means TK, Daly MJ,
Xavier RJ. Ubiquitin Ligase TRIM62 Regulates CARD9-Mediated Anti-fungal Immunity and
Intestinal Inflammation. Immunity. 2015 Oct;43[4]:715–26.
[94] Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, Hattori M, Takeshita K, Kanai T, Saijo S,
Ohno N, Iwakura Y. Inhibition of Dectin-1 Signaling Ameliorates Colitis by Inducing Lactobacillus Mediated Regulatory T Cell Expansion in the Intestine. Cell Host & Microbe. 2015 Aug;18[2]:183–97.
[95] Sokol H, Conway KL, Zhang M, Choi M, Morin B, Cao Z, Villablanca EJ, Li C, Wijmenga C, Yun
SH, Shi HN, Xavier RJ. Card9 Mediates Intestinal Epithelial Cell Restitution, T-Helper 17 Responses,
and Control of Bacterial Infection in Mice. Gastroenterology. 2013 Sep;145[3]:591-601.e3.
[96] Zeng B, Shi S, Ashworth G, Dong C, Liu J, Xing F. ILC3 function as a double-edged sword in
inflammatory bowel diseases. Cell Death Dis. 2019 Apr 8;10[4]:1–12.
[97] Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, Lin X. Dectin-3 Deficiency Promotes Colitis
Development due to Impaired Antifungal Innate Immune Responses in the Gut.
PLoS Pathog. 2016 Jun 9;12[6]:e1005662.
[98] Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A Double Edged Sword Role of Interleukin-22 in
Wound Healing and Tissue Regeneration. Front Immunol. 2020 Sep 17;11:2148.
[99] Malik A, Sharma D, Malireddi RKS, Guy CS, Chang TC, Olsen SR, Neale G, Vogel P, Kanneganti
TD. SYK-CARD9 Signaling Axis Promotes Gut Fungi-Mediated Inflammasome Activation to Restrict
Colitis and Colon Cancer. Immunity. 2018 Sep;49[3]:515-530.e5.
[100] Wang T, Fan C, Yao A, Xu X, Zheng G, You Y, Jiang C, Zhao X, Hou Y, Hung MC, Lin X. The
Adaptor Protein CARD9 Protects against Colon Cancer by Restricting Mycobiota-Mediated Expansion
of Myeloid-Derived Suppressor Cells. Immunity. 2018 Sep;49[3]:504-514.e4.
[101] Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY, Yu J. Enteric
fungal microbiota dysbiosis and ecological alterations in colorectal cancer.
Gut. 2019 Apr 1;68[4]:654–62.
[102] Gao R, Kong C, Li H, Huang L, Qu X, Qin N, Qin H. Dysbiosis signature of mycobiota in colon polyp
and colorectal cancer. Eur J Clin Microbiol Infect Dis. 2017 Dec;36[12]:2457–68.
[103] Gao R, Xia K, Wu M, Zhong H, Sun J, Zhu Y, Huang L, Wu X, Yin L, Yang R, Chen C, Qin H.
Alterations of Gut Mycobiota Profiles in Adenoma and Colorectal Cancer. Front Cell Infect Microbiol.
2022 Feb 24;12:839435.
[104] Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N, Zhu Y, Zhu B. Dysbiosis
of Fungal Microbiota in the Intestinal Mucosa of Patients with Colorectal Adenomas. Sci Rep. 2015
Jan 23;5[1]:7980.
[105] Bergmann H, Roth S, Pechloff K, Kiss EA, Kuhn S, Heikenwälder M, Diefenbach A, Greten FR,
Ruland J. Card9-dependent IL-1β regulates IL-22 production from group 3 innate lymphoid cells and
promotes colitis-associated cancer. Eur J Immunol. 2017 Aug;47[8]:1342–53.
[106] Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, Bridonneau C, Jegou S,
Hoffmann TW, Natividad JM, Brot L, Taleb S, Couturier-Maillard A, Nion-Larmurier I, Merabtene F,
Sksik P, Bourrier A, Cosnes J, Ryffel B, Beaugerie L, Launay JM, Langella P, Xavier RJ, Sokol H.
CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon
receptor ligands. Nat Med. 2016 Jun;22[6]:598–605.
[107] Nelson A, Stewart CJ, Kennedy NA, Lodge JK, Tremelling M, UK IBD Genetics Consortium, Probert
CS, Parkes M, Mansfield JC, Smith DL, Hold GL, Lees CW, Bridge SH, Lamb CA. The Impact of
NOD2 Genetic Variants on the Gut Mycobiota in Crohn’s Disease Patients in Remission and in
Individuals Without Gastrointestinal Inflammation. J Crohns Colitis. 2021 May 4;15[5]:800–12.
[108] Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S, Tysk C, O’Morain CA,
Gassul M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J,
Colombel JF, Sahbatou M, Thomas G. Association of NOD2 leucine-rich repeat variants with
susceptibility to Crohn’s disease. Nature. 2001 May;411[6837]:599–603.
[109] Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease.
Nat Med. 2016 Oct;22[10]:1079–89.
[110] Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, Curtis
JL. Bacterial Topography of the Healthy Human Lower Respiratory Tract. mBio. 2017 Mar 8; 8[1].
[111] Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, Beck JM, Curtis
JL, Huffnagle GB. Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and
Gastric Microbiotas in Healthy Individuals. mBio. 2015 May;6[2]:e00037-15.
[112] Gleeson K, Maxwell SL, Eggli DF. Quantitative Aspiration During Sleep in Normal Subjects. Chest.
1997 May;111[5]:1266–72.
[113] Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a
two-way street. Mucosal Immunol. 2017 Mar;10[2]:299–306.
[114] Nguyen LDN, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human
respiratory microbiome. Front Microbiol. 2015, Feb 13;6:89.
[115] Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021 Mar 18;184[6]:1469–85.
[116] Scadding GK, Scadding GW. Innate and Adaptive Immunity: ILC2 and Th2 Cells in Upper and Lower
Airway Allergic Diseases. J Allergy Clin Immunol Pract. 2021 May 1;9[5]:1851–7.
[117] Sharma A, Laxman B, Naureckas ET, Hogarth DK, Sperling AI, Solway J, Ober C, Gilbert JA, White
SR. Associations between fungal and bacterial microbiota of airways and asthma endotypes. J Allergy
Clin Immunol. 2019 Nov 1;144[5]:1214-1227.e7.
[118] Jacquet A. Interactions of airway epithelium with protease allergens in the allergic response:
Interactions of airway epithelium with protease allergens. Clin Exp Allergy. 2011 Mar;41[3]:305–11.
[119] Shakib F, Ghaemmaghami AM, Sewell HF. The molecular basis of allergenicity.
Trends Immunol. 2008 Dec;29[12]:633–42.
[120] Yike I. Fungal Proteases and Their Pathophysiological Effects.
Mycopathologia. 2011 May;171[5]:299–323.
[121] Porter P, Susarla SC, Polikepahad S, Qian Y, Hampton J, Kiss A, Vaidya S, Sur S, Ongeri V, Yang T,
Delclos GL, Abramson S, Kheradmand F, Corry DB. Link between allergic asthma and airway mucosal
infection suggested by proteinase-secreting household fungi.
Mucosal Immunol. 2009 Nov;2[6]:504–17.
[122] Debarry J, Garn H, Hanuszkiewicz A, Dickgreber N, Blümer N, von Mutius E, Bufe A, Gatermann S,
Renz H, Holst O, Heine H. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm
cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol. 2007 Jun;119[6]:
[123] Hagner S, Harb H, Zhao M, Stein K, Holst O, Ege MJ, Mayer M, Matthes J, Bauer J. Farm-derived
Grampositive bacterium Staphylococcus sciuri W620 prevents asthma phenotype in HDM- and OVA exposed mice. 2013 Mar;68[3]:322-9.
[124] Rubio-Portillo E, Orts D, Llorca E, Fernández C, Antón J, Ferrer C, Gálvez B, Esteban V, Revelles E,
Pérez-Martín C, Gómez-Imernón E, Adsuar J, Piqueras P, Amat B, Franco J, Colom MF. The Domestic
Environment and the Lung Mycobiome. Microorganisms. 2020 Nov 2;8[11]:1717.
[125] Medrek SK, Kao CC, Yang DH, Hanania NA, Parulekar AD. Fungal Sensitization Is Associated with
Increased Risk of Life-Threatening Asthma. J Allergy Clin Immunol Pract. 2017 Jul 1;5[4]:1025-
[126] O’Driscoll BR, Hopkinson LC, Denning DW. Mold sensitization is common amongst patients with
severe asthma requiring multiple hospital admissions. BMC Pulm Med. 2005 Feb 18;5[1]:4.
[127] Woolnough K, Fairs A, Pashley CH, Wardlaw AJ. Allergic fungal airway disease: pathophysiologic
and diagnostic considerations. Curr Opin Pulm Med. 2015 Jan;21[1]:39–47.
[128] Agbetile J, Fairs A, Desai D, Hargadon B, Bourne M, Mutalithas K, Edwards R, Morley JP, Monteiro
WR, Kulkarni NS, Green RH, Pavord ID, Bradding P, Brightling CE, Wardlaw AJ, Pashley CH.
Isolation of filamentous fungi from sputum in asthma is associated with reduced post-bronchodilator
FEV1. Clin Exp Allergy. 2012 May;42[5]:782–91.
[129] Lehmann S, Sprünken A, Wagner N, Tenbrock K, Ott H. Clinical relevance of IgE-mediated
sensitization against the mould Alternaria alternata in children with asthma. Ther Adv Respir Dis. 2017
Jan 1;11[1]:30–9.
[130] Salo PM, Arbes SJ, Sever M, Jaramillo R, Cohn RD, London SJ, Zeldin DC. Exposure to Alternaria
alternata in US homes is associated with asthma symptoms. J Allergy Clin Immunol. 2006
[131] Vicencio AG, Santiago MT, Tsirilakis K, Stone A, Worgall S, Foley EA, Bush D, Goldman DL. Fungal
sensitization in childhood persistent asthma is associated with disease severity. Pediatr Pulmonol. 2014
[132] Welsh KG, Holden KA, Wardlaw AJ, Satchwell J, Monteiro W, Pashley CH, Gaillard EA. Fungal
sensitization and positive fungal culture from sputum in children with asthma are associated with
reduced lung function and acute asthma attacks respectively. Clin Exp Allergy.
2021 Jun;51[6]:790–800.
[133] Masaki K, Fukunaga K, Matsusaka M, Kabata H, Tanosaki T, Mochimaru T, Kamatani T, Ohtsuka K,
Baba R, Ueda S, Suzuki Y, Sakamaki F, Oyamada Y, Inoue T, Oguma T, Sayama K, Koh H, Nakamura
M, Umeda A, Kamei K, Izuhara K, Asano K, Betsuyaku T. Characteristics of severe asthma with fungal
sensitization. Ann Allergy Asthma Immunol. 2017 Sep 1;119[3]:253–7.
[134] Tanaka A, Fujiwara A, Uchida Y, Yamaguchi M, Ohta S, Homma T, Watanabe Y, Yamamoto M,
Suzuki S, Yokoe T, Sagara H. Evaluation of the association between sensitization to common inhalant
fungi and poor asthma control. Ann Allergy Asthma Immunol. 2016 Aug 1;117[2]:163-168.e1.
[135] Zou H, Su L, Fang QH, Ma YM. Correlation between fungal sIgE and bronchial asthma severity.
Exp Ther Med. 2013 Aug 1;6[2]:537–41.
[136] Goh KJ, Yii ACA, Lapperre TS, Chan AK, Chew FT, Chotirmall SH, Koh MS. Sensitization to
Aspergillus species is associated with frequent exacerbations in severe asthma.
J Asthma Allergy. 2017 Apr 21;10:131–40.
[137] Fairs A, Agbetile J, Hargadon B, Bourne M, Monteiro WR, Brightling CE, Bradding P, Green RH,
Mutalithas K, Desai D, Pavord ID, Wardlaw AJ, Pashley CH. IgE sensitization to Aspergillus fumigatus
is associated with reduced lung function in asthma.
Am J Respir Crit Care Med. 2010 Dec 1;182[11]:1362–8.
[138] Menzies D, Holmes L, McCumesky G, Prys-Picard C, Niven R. Aspergillus sensitization is associated
with airflow limitation and bronchiectasis in severe asthma: Aspergillus, bronchiectasis and severe
asthma. Allergy. 2011 May;66[5]:679–85.
[139] Bafadhel M, Mckenna S, Agbetile J, Fairs A, Desai D, Mistry V, Morley JP, Pancholi M, Pavord ID,
Wardlaw AJ, Pashley CH, Brightling CE. Aspergillus fumigatus during stable state and exacerbations
of COPD. Eur Resp J. 2014 Jan 1;43[1]:64–71.
[140] Fraczek MG, Chishimba L, Niven RM, Bromley M, Simpson A, Smyth L, Denning DW, Bowyer P.
Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal
disease. J Allergy Clin Immunol. 2018 Aug;142[2]:407–14.
[141] Denning DW, O’Driscoll BR, Powell G, Chew F, Atherton GT, Vyas A, Miles J, Morris J, Niven RM.
Randomized Controlled Trial of Oral Antifungal Treatment for Severe Asthma with Fungal
Sensitization: The Fungal Asthma Sensitization Trial (FAST) Study. Am J Respir Crit Care Med.
2009 Jan;179[1]:11–8.
[142] Li E, Tsai CL, Maskatia ZK, Kakkar E, Porter P, Rossen RD, Perusich S, Knight JM, Kheradmand F,
Corry DB. Benefits of antifungal therapy in asthma patients with airway mycosis: A retrospective
cohort analysis. Immun Inflamm Dis. 2018 Jun;6[2]:264–75.
[143] Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD, Nicod LP, Lloyd CM,
Marsland BJ. Lung microbiota promotes tolerance to allergens in neonates via PD-L1.
Nat Med. 2014 Jun;20[6]:642–7.
[144] Remot A, Descamps D, Noordine ML, Boukadiri A, Mathieu E, Robert V, Riffault S, Lambrecht B,
Langella P, Hammad H, Thomas M. Bacteria isolated from lung modulate asthma susceptibility in
mice. ISME J. 2017 May;11[5]:1061–74.
[145] Ege MJ, Mayer M, Normand A, Genuneit J, Cookson WOCM, Braun-Fahrländer, Heederick D,
Piarroux R, von Mutius E. Exposure to Environmental Microorganisms and Childhood Asthma. N Engl
J Med. 2011 Feb 24;364[8]:701-9.
[146] Zemanick ET, Hoffman LR. Cystic Fibrosis: Microbiology and Host Response. Pediatr Clin North
Am. 2016 Aug;63[4]:617–36.
[147] Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F,
Wallaert B, Dei Cas E, Sime-Ngando T, Chabé M, Viscogliosi E. The Airway Microbiota in Cystic Fibrosis: A
Complex Fungal and Bacterial Community—Implications for Therapeutic Management. PLoS One.
2012 Apr 27;7[4]:e36313.
[148] Soret P, Vandenborght LE, Francis F, Coron N, Enaud R, Avalos M, Schaeverbeke T, Berger P, Fayon
M, Thiebaut R, Delhaes L. Respiratory mycobiome and suggestion of inter-kingdom network during
acute pulmonary exacerbation in cystic fibrosis. Sci Rep. 2020 Feb 27;10[1]:3589.
[149] Willger SD, Grim SL, Dolben EL, Shipunova A, Hampton TH, Morrison HG, Filkins LM, O’Toole
GA, Moulton LA, Ashare A, Sogin ML, Hogan DA. Characterization and quantification of the fungal
microbiome in serial samples from individuals with cystic fibrosis. Microbiome. 2014 Nov 3;2[1]:40.
[150] Al Shakirchi M, Klingspor L, Bergman P, Hjelte L, de Monestrol I. A 16-year retrospective study on
fungal prevalence and diversity in patients with cystic fibrosis: Candida dubliniensis was associated
with a decline in lung function. International J Infect Dis. 2020 Jul 1;96:663–70.
[151] Grinwis ME, Sibley CD, Parkins MD, Eshaghurshan CS, Rabin HR, Surette MG. Characterization of
Streptococcus milleri Group Isolates from Expectorated Sputum of Adult Patients with Cystic Fibrosis.
J Clin Microbiol. 2010 Feb;48[2]:395–401.
[152] Stiemsma LT, Turvey SE. Asthma and the microbiome: defining the critical window in early life.
Allergy Asthma Clin Immunol. 2017 Dec;13[1]:3.
[153] Arrieta MC, Arévalo A, Stiemsma L, Dimitriu P, Chico ME, Loor S, Maritza V, Boutin RCT, Morien
E, Jin M, Turvey SE, Walter J, Parfrey LW, Cooper PJ, Finlay B. Associations between infant fungal
and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin
Immunol. 2018 Aug;142[2]:424-434.e10.
[154] Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte
E, Lukacs NW, Wegienka G, Boushey HA, Ownby DR, Zoratti EM, Levin AM, Johnson CC, Lynch
SV. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation.
Nat Med. 2016 Oct;22[10]:1187–91.
[155] Schei K, Simpson MR, Øien T, Salamati S, Rudi K, Ødegård RA. Allergy‐related diseases and early
gut fungal and bacterial microbiota abundances in children. Clin Transl Allergy. 2021, Jul;11[5].
[156] Tiew PY, Mac Aogain M, Ali NABM, Thng KX, Goh K, Lau KJX, Chotirmall SH. The Mycobiome
in Health and Disease: Emerging Concepts, Methodologies and Challenges.
Mycopathologia. 2020 Apr 1;185[2]:207–31.
[157] Watson RL, Koff EM de, Bogaert D. Characterising the respiratory microbiome.
Eur Resp J. 2019, Feb 1;53[2].
[158] Boutin RC, Petersen C, Woodward SE, Serapio-Palacios A, Bozorgmehr T, Loo R, Chalanuchpong A,
Cirstea M, Lo B, Huus KE, Barcik W, Azad MB, Becker AB, Mandhane PJ, Moraes TJ, Sears MR,
Subbarao P, McNagny KM, Turvey SE, Finlay B. Bacterial–fungal interactions in the neonatal gut
influence asthma outcomes later in life. eLife. 2021 Apr 20;10:e67740.
[159] Skalski JH, Limon JJ, Sharma P, Gargus MD, Nguyen C, Tang J, Coelho AL, Hogaboam CM, Crother
TR, Underhill DM, Hohl TM. Expansion of commensal fungus Wallemia mellicola in the
gastrointestinal mycobiota enhances the severity of allergic airway disease in mice.
PLoS Pathog. 2018 Sep 20;14[9]:e1007260.
[160] Li X, Leonardi I, Semon A, Doron I, Gao IH, Putzel GG, Kim Y, Kabata H, Artis D, Fiers WD,
Ramer Tait AE, Iliev ID. Response to Fungal Dysbiosis by Gut-Resident CX3CR1+ Mononuclear Phagocytes
Aggravates Allergic Airway Disease. Cell Host Microbe. 2018 Dec;24[6]:847-856.e4.
[161] Kim YG, Udayanga KGS, Totsuka N, Weinberg JB, Núñez G, Shibuya A. Gut Dysbiosis Promotes
M2 Macrophage Polarization and Allergic Airway Inflammation via Fungi-Induced PGE2. Cell Host
Microbe. 2014 Jan;15[1]:95–102.
[162] Gour N, Lajoie S, Smole U, White M, Hu D, Goddard P, Huntsman S, Eng C, Mak A, Oh S, Kim JH,
Sharma A, Plante S, Salem IH, Resch Y, Xiao X, Yao N, Singh A, Vrtala S, Chakir J, Burchard EG,
Lane AP, Wills-Karp M. Dysregulated invertebrate tropomyosin–dectin-1 interaction confers
susceptibility to allergic diseases. Sci Immunol. 2018 Feb 9;3[20]:eaam9841.
[163] Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F,
Napolitani G. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper
memory cells. Nat Immunol. 2007 Jun;8[6]:639–46.
[164] Bacher P, Kniemeyer O, Schönbrunn A, Sawitzki B, Assenmacher M, Rietschel E, Steinbach A,
Cornely OA, Brakhage AA, Thiel A, Scheffold A. Antigen-specific expansion of human regulatory T
cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunol. 2014 Jul;7[4]:916–28.
[165] Hebart H, Bollinger C, Fisch P, Sarfati J, Meisner C, Baur M, Loeffler J, Monod M, Latgè JP, Einsele
H. Analysis of T-cell responses to Aspergillus fumigatus antigens in healthy individuals and patients
with hematologic malignancies. Blood. 2002 Dec 15;100[13]:4521–8.
[166] Jolink H, Meijssen IC, Hagedoorn RS, Arentshorst M, Drijfhout JW, Mulder A, Claas FHJ, van Dissel
JT, Falkenburg JHF, Heemskerk MHM. Characterization of the T-Cell–Mediated Immune Response
Against the Aspergillus fumigatus Proteins Crf1 and Catalase 1 in Healthy Individuals. J Infect Dis.
2013 Sep 1;208[5]:847–56.
[167] Vogel K, Pierau M, Arra A, Lampe K, Schlueter D, Arens C, Brunner-Weinzierl MC. Developmental
induction of human T-cell responses against Candida albicans and Aspergillus fumigatus. Sci Rep.
2018 Dec;8[1]:16904.
[168] Calderón-Gómez E, Bassolas-Molina H, Mora-Buch R, Dotti I, Planell N, Esteller M, Gallego M, Martí
M, Garcia-Martín C, Martínez-Torró C, Ordás I, Singh S, Panés J, Bneítez-Ribas D, Salas A.
Commensal-Specific CD4+ Cells From Patients With Crohn’s Disease Have a T-Helper 17
Inflammatory Profile. Gastroenterology. 2016 Sep;151[3]:489-500.e3.
[169] Hegazy AN, West NR, Stubbington MJT, Wendt E, Suijker KIM, Datsi A, This S, Danne C, Campion
S, Duncan SH, Owens BMJ, Uhlig HH, McMichael A, Bergthaler A, Teichmann SA, Keshav S, Powrie
F. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are
Abundant in Healthy Individuals and Function Is Altered During Inflammation. Gastroenterology.
2017 Nov;153[5]:1320-1337.e16.
[170] Stuehler C, Nowakowska J, Bernardini C, Topp MS, Battegay M, Passweg J, Khanna N. Multispecific
Aspergillus T Cells Selected by CD137 or CD154 Induce Protective Immune Responses Against the
Most Relevant Mold Infections. J Infect Dis. 2015 Apr 15;211[8]:1251–61.
[171] Crabb DW, Im GY, Szabo G, Mellinger JL, Lucey MR. Diagnosis and Treatment of
Alcohol Associated Liver Diseases: 2019 Practice Guidance From the American Association for the Study of
Liver Diseases. Hepatology. 2020 Jan;71[1]:306–33.
[172] Zeng S, Schnabl B. Roles for the mycobiome in liver disease. Liver Int. 2022 Apr;42[4]:729–41.
[173] Hartmann P, Lang S, Zeng S, Duan Y, Zhang X, Wang Y, Bondareva M, Kruglov A, Fouts DE, Stärkel
P, Schnabl B. Dynamic Changes of the Fungal Microbiome in Alcohol Use Disorder. Front Physiol.
2021 Jul 19;12:699253.
[174] Lang S, Duan Y, Liu J, Torralba MG, Kuelbs C, Ventura‐Cots M, Abraldes JG, Bosques-Padilha F,
Verna EC, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross D, Lucey MR, Louvet A,
Mathurin P, Garcia-Tsao G, Ho SB, Tu XM, Bataller R, Stärkel P, Fouts DE, Schnabl B. Intestinal
Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients With Alcoholic Hepatitis.
Hepatology. 2020 Feb;71[2]:522–38.
[175] Yang AM, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, Bluemel S, Hartmann P, Xu J,
Koyama Y, Kisseleva T, Torralba MG, Moncera K, Beeri K, Chen CS, Freese K, Hellerbrand C, Lee
SML, Hoffman HM, Mehal WZ, Garcia-Tsao G, Mutlu EA, Keshavarzian A, Brown GD, Ho SB,
Bataller R, Stärkel P, Fouts DE, Schnabl B. Intestinal fungi contribute to development of alcoholic
liver disease. Am Soc Clin Invest; 2017 Jun 30;127[7]:2829-41.
[176] Chu H, Duan Y, Lang S, Jiang L, Wang Y, Llorente C, Liu J, Mogavero S, Bosques-Padilha F, Abraldes
JG, Vargas V, Tu XM, Yang L, Hou X, Hube B, Stärkel P, Schnabl B. The Candida albicans exotoxin
candidalysin promotes alcohol-associated liver disease. J Hepatol. 2020 Mar 1;72[3]:391–400.
[177] Sun S, Wang K, Sun L, Cheng B, Qiao S, Dai H, Shi W, Ma J, Liu H. Therapeutic manipulation of gut
microbiota by polysaccharides of Wolfiporia cocos reveals the contribution of the gut fungi-induced
PGE2 to alcoholic hepatic steatosis. Gut Microbes. 2020 Nov 9;12[1]:1830693.
[178] Wu J, Wu D, Ma K, Wang T, Shi G, Shao J, Wang C, Yan G. Paeonol ameliorates murine alcohol liver
disease via mycobiota‐mediated Dectin‐1/IL‐1β signaling pathway.
J Leukoc Biol. 2020 Jul;108[1]:199–214.
[179] Gao B, Zhang X, Schnabl B. Fungi–Bacteria Correlation in Alcoholic Hepatitis Patients.
Toxins. 2021 Feb;13[2]:143.
[180] Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, Kassir R, Singhal R, Mahawar K,
Ramnarain D. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical
management and effects of weight loss. BMC Endocr Disord. 2022 Mar 14;22[1]:63.
[181] Demir M, Lang S, Hartmann P, Duan Y, Martin A, Miyamoto Y, Bondareva M, Zhang X, Wang Y,
Kasper P, Bang C, Roderburg C, Tacke F, Steffen HM, Goeser T, Kruglov A, Eckmann L, Stärkel P,
Fouts DE, Schnabl B. The fecal mycobiome in non-alcoholic fatty liver disease.
J Hepatol. 2022 Apr 1;76[4]:788–99.
[182] You N, Xu J, Wang L, Zhuo L, Zhou J, Song Y, Ali A, Luo Y, Yang J, Yang W, Zheng M, Xu J, Shao
L, Shi J. Fecal Fungi Dysbiosis in Nonalcoholic Fatty Liver Disease. Obesity. 2021 Feb;29[2]:350–8.
[183] Kalan L, Loesche M, Hodkinson BP, Heilmann K, Ruthel G, Gardner SE, Grice EA. Redefining the
Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with
Delayed Healing. mBio. 2016 Sep 6;7[5]:e01058-16.
[184] O’Driscoll BR, Hopkinson LC, Denning DW. Mold sensitization is common amongst patients with
severe asthma requiring multiple hospital admissions. BMC Pulm Med. 2005 Dec;5[1]:4.
[185] Oh J, Byrd AL, Park M, Kong HH, Segre JA. Temporal Stability of the Human Skin Microbiome. Cell.
2016 May 5;165[4]:854–66.
[186] Chen YE, Fischbach MA, Belkaid Y. Skin microbiota–host interactions. Nature. 2018 Jan
[187] Oh J, Freeman AF, Program NCS, Park M, Sokolic R, Candotti F, Holland SM, Segre JA, Kong HH.
The altered landscape of the human skin microbiome in patients with primary immunodeficiencies.
Genome Res. 2013 Jan 12;23[12]:2103–14.
[188] Smeekens SP, Huttenhower C, Riza A, Veerdonk FL van de, Zeeuwen PLJM, Schalkwijk J, Meer
JWM, Xavier RJ, Netea MG, Gevers D. Skin Microbiome Imbalance in Patients with STAT1/STAT3
Defects Impairs Innate Host Defense Responses. J Innate Immun. 2014 Mar;6[3]:253–62.
[189] Tong PL, Roediger B, Kolesnikoff N, Biro M, Tay SS, Jain R, Shaw LE, Grimbaldeston MA, Weninger
W. The Skin Immune Atlas: Three-Dimensional Analysis of Cutaneous Leukocyte Subsets by
Multiphoton Microscopy. J Invest Dermatol. 2015 Jan 1;135[1]:84–93.
[190] Tay SS, Roediger B, Tong PL, Tikoo S, Weninger W. The Skin-Resident Immune Network. Curr
Dermatol Rep. 2014;3[1]:13–22.
[191] Béke G, Dajnoki Z, Kapitány A, Gáspár K, Medgyesi B, Póliska S, Hendrik Z, Péter Z, Törócsik D,
Bíró T, Szegedi A. Immunotopographical Differences of Human Skin. Front Immunol.
2018 Mar 5;9:424.
[192] Kwiecien K, Zegar A, Jung J, Brzoza P, Kwitniewski M, Godlewska U, Grygier B, Kwiecinska P,
Morytko A, Cichy J. Architecture of antimicrobial skin defense.
Cytokine Growth Factor Rev. 2019 Oct;49:70–84.
[193] Nakatsuji T, Cheng JY, Gallo RL. Mechanisms for control of skin immune function by the microbiome.
Curr Opin Immunol. 2021 Oct 1;72:324–30.
[194] Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL. The microbiome extends to
subepidermal compartments of normal skin. Nat Commun. 2013 Jun;4[1]:1431.
[195] Bovenschen HJ, van de Kerkhof PC, van Erp PE, Woestenenk R, Joosten I, Koenen HJPM. Foxp3+
regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found
in lesional skin. J Invest Dermatol. 2011 Sep;131[9]:1853–60.
[196] Malhotra N, Leyva-Castillo JM, Jadhav U, Barreiro O, Kam C, O’Neill NK, Meylan F, Chambon P,
von Andrian UH, Siegel RM, Wang EC, Shivdasani R, Geha RS. RORα-expressing T regulatory cells
restrain allergic skin inflammation. Sci Immunol. 2018 Mar 2;3[21]:eaao6923.
[197] Reefer AJ, Satinover SM, Solga MD, Lannigan JA, Nguyen JT, Wilson BB, Woodfolk JA. Analysis
of CD25hiCD4+ “regulatory” T-cell subtypes in atopic dermatitis reveals a novel T[H]2-like
population. J Allergy Clin Immunol. 2008 Feb;121[2]:415-422.e3.
[198] Goodman WA, Levine AD, Massari JV, Sugiyama H, McCormick TS, Cooper KD. IL-6 signaling in
psoriasis prevents immune suppression by regulatory T cells. J Immunol. 2009 Sep 1;183[5]:3170–6.
[199] Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR, McCormick TS, Cooper KD.
Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism
underlying unrestrained pathogenic effector T cell proliferation. J Immunol. 2005 Jan 1;174[1]:164–73.
[200] Scharschmidt TC, Vasquez KS, Pauli ML, Leitner EG, Chu K, Truong HA, Lowe MM, Rodriguez RS,
Ali N, Laszik ZG, Sonnenburg JL, Millar SE, Rosenblum MD. Commensal Microbes and Hair Follicle
Morphogenesis Coordinately Drive Treg Migration into Neonatal Skin. Cell Host Microbe.
2017 Apr 12;21[4]:467-477.e5.
[201] Rodriguez RS, Pauli ML, Neuhaus IM, Yu SS, Arron ST, Harris HW, Hsin-Yi Yang S, Anthony BA,
Sverdrup FM, Krow-Lucal E, MacKenzie TC, Johnson DS, Meyer EH, Löhr A, Hsu A, Koo J, Liao
W, Gupta R, Debbaneh MG, Butler D, Huynh M, Levin EC, Leon A, Hoffman WY, McGrath MH,
Alvarado MD, Ludwig CH, Truong HA, Maurano MM, Gratz IK, Abbas AK, Rosenblum MD.
Memory regulatory T cells reside in human skin. J Clin Invest. 2014 Mar 3;124[3]:1027–36.
[202] Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the
Epidermis. Front Immunol. 2017 Nov 29;8:1676.
[203] Aar AMG van der, Picavet DI, Muller FJ, Boer L de, Capel TMM van, Zaat SAJ, Bos JD, Janssen H,
George TC, Kapsenberg ML, Ham SM, Teunissen MBM, Jong EC. Langerhans Cells Favor Skin Flora
Tolerance through Limited Presentation of Bacterial Antigens and Induction of Regulatory T Cells. J
Invest Dermatol. 2013 May 1;133[5]:1240–9.
[204] Cabañes FJ. Malassezia Yeasts: How Many Species Infect Humans and Animals?
PLoS Pathog. 2014 Feb 27;10[2]:e1003892.
[205] Gioti A, Nystedt B, Li W, Xu J, Andersson A, Averette AF, Münch K, Wang X, Kappauf C, Kingsbury
JM, Kraak B, Walker LA, Johansson HJ, Holm T, Lehtiö J, Stajich JE, Mieczkowski P, Kahmann R,
Kennell JC, Cardenas ME, Lundeberg J, Saunders CW, Boekhout T, Dawson TL, Munro CA, de Groot
PWJ, Butler G, Heitman J, Scheynius A. Genomic Insights into the Atopic Eczema-Associated Skin
Commensal Yeast Malassezia sympodialis. mBio. 2012 Jan 22;4[1]:e00572-12.
[206] Wu G, Zhao H, Li C, Rajapakse MP, Wong WC, Xu J, Saunders CW, reeder NL, Reilman RA,
Scheynius A, Sun S, Billmyre BR, Li W, Averette AF, Mieczkowski P, Heitman J, Theelen B, Schröder
MS, Sessions PF, Butler G, Maurer-Stroh S, Boekhout T, Nagarajan N, Jr TLD. Genus-Wide
Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on
Human Skin. PLoS Genet. 2015 Nov 5;11[11]:e1005614.
[207] Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, Kronstad JW, DeAngelis YM, Reeder
NL, Johnstone KR, Leland M, Fieno AM, Begley WM, Sun Y, Lacey MP, Chaudhary T, Keough T,
Chu L, Sears R, Yuan B, Dawson TL. Dandruff-associated Malassezia genomes reveal convergent and
divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA.
2007 Nov 20;104[47]:18730–5.
[208] Chowdhry S, Gupta S. Topical antifungals used for treatment of seborrheic dermatitis.
J Bacteriol Mycol. 2017 Jan 6;4[1]:1-7.
[209] Harada K, Saito M, Sugita T, Tsuboi R. Malassezia species and their associated skin diseases.
J Dermatol. 2015 Mar;42[3]:250–7.
[210] Velegraki A, Cafarchia C, Gaitanis G, Iatta R, Boekhout T. Malassezia infections in humans and
animals: pathophysiology, detection, and treatment. PLoS Pathog. 2015 Jan;11[1]:e1004523.
[211] White TC, Findley K, Dawson TL, Scheynius A, Boekhout T, Cuomo CA, Xu J, Saunders CW. Fungi
on the Skin: Dermatophytes and Malassezia. Cold Spring Harb Perspect Med.
2014 Aug 1;4[8]:a019802–a019802.
[212] Sroka-Tomaszewska J, Trzeciak M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis.
Int J Mol Sci. 2021 Apr 16;22[8]:4130.
[213] Fyhrquist N, Muirhead G, Prast-Nielsen S, Jeanmougin M, Olah P, Skoog T, Jules-Clement G, Feld
M, Barrientos-Somarribas M, Sinkko H, van den Bogaard EH, Zeeuwen PLJM, Rikken G, Schalkwijk
J, Niehues H, Däubener W, Eller KS, Alexander H, Pennino D, Suomela S, Tessas L, Lybeck E, Baran
AM, Darban H, Gangwar RS, Gerstel U, Jahn K, Karisola P, Yan L, Hansmann B, Katayama S, Meller
S, Bylesjö M, Hupé P, Levi-Schaffer F, Greco D, Ranki A, Schröder JM, Barker J, Kere J, Tsoka S,
Lauerma A, Soumelis V, Nestle FO, Homey B, Andersson B, Alenius H. Microbe-host interplay in
atopic dermatitis and psoriasis. Nat Commun. 2019 Oct 16;10[1]:4703.
[214] Cho O. Relationships among the Genotypes of Malassezia Globosa Colonizing Patients with Atopic
Dermatitis, the Clinical Severity of the Disease, and the Level of Specific IgE Antibodies. J Clin Exp
Dermatol Res. 2013 Dec 12;4[5].
[215] Sugita T, Tajima M, Amaya M, Tsuboi R, Nishikawa A. Genotype Analysis of Malassezia restricta as
the Major Cutaneous Flora in Patients with Atopic Dermatitis and Healthy Subjects.
Microbiol Immunol. 2004 Oct;48[10]:755–9.
[216] Sugita T, Suto H, Unno T, Tsuboi R, Ogawa H, Shinoda T, Nishikawa A. Molecular Analysis of
Malassezia Microflora on the Skin of Atopic Dermatitis Patients and Healthy Subjects.
2001 Oct 1;39:[10]:3486-90.
[217] Schön MP. Adaptive and Innate Immunity in Psoriasis and Other Inflammatory Disorders.
Front Immunol. 2019 Jul 26;10:1764.
[218] Koike Y, Kuwatsuka S, Nishimoto K, Motooka D, Murota H. Skin Mycobiome of Psoriasis Patients is
Retained during Treatment with TNF and IL-17 Inhibitors. Int J Molec Sci. 2020 Jan;21[11]:3892.
[219] Bangert C, Rindler K, Krausgruber T, Alkon N, Thaler FM, Kurz H, Ayub T, Demirtas D, Fortelny N,
Vorstandlechner V, Bauer WM, Quint T, Mildner M, Jonak C, Elbe-Bürger A, Griss J, Bock C, Brunner
PM. Persistence of mature dendritic cells, TH2A, and Tc2 cells characterize clinically resolved atopic
dermatitis under IL-4Rα blockade. Sci Immunol. 2021 Jan 22;6[55]:eabe2749.
[220] Wikramanayake TC, Borda LJ, Miteva M, Paus R. Seborrheic dermatitis—Looking beyond
Malassezia. Exp Dermatol. 2019 Sep;28[9]:991–1001.
[221] Ro BI, Dawson TL. The Role of Sebaceous Gland Activity and Scalp Microfloral Metabolism in the
Etiology of Seborrheic Dermatitis and Dandruff. J Invest Dermatol Symp Proc.
2005 Dec;10[3]:194–7.
[222] Sparber F, LeibundGut-Landmann S. Host Responses to Malassezia spp. in the Mammalian Skin.
Front Immunol. 2017 Nov 22;8:1614.
[223] DeAngelis YM, Gemmer CM, Kaczvinsky JR, Kenneally DC, Schwartz JR, Dawson TL. Three
Etiologic Facets of Dandruff and Seborrheic Dermatitis: Malassezia Fungi, Sebaceous Lipids, and
Individual Sensitivity. J Invest Dermatol Symp Proc. 2005 Dec;10[3]:295–7.
[224] Amaya M, Tajima M, Okubo Y, Sugita T, Nishikawa A, Tsuboi R. Molecular analysis of Malassezia
microflora in the lesional skin of psoriasis patients. J Dermatol. 2007 Sep;34[9]:619–24.
[225] Falk MHS, Linder MT, Johansson C, Bartosik J, Bäck O, Särnhult T, Wahlgren CF, Scheynius A,
Faergemann J. The Prevalence of Malassezia Yeasts in Patients with Atopic Dermatitis, Seborrhoeic
Dermatitis and Healthy Controls. Acta Dermato-Venereologica. 2005 Jan 1;85[1]:17–23.
[226] Gomez-Moyano E, Crespo-Erchiga V, Martínez-Pilar L, Godoy Diaz D, Martínez-García S, Lova
Navarro M, Vera Casaño A. Do Malassezia species play a role in exacerbation of scalp psoriasis?
J Mycol Med. 2014 Jun;24[2]:87–92.
[227] Liu X, Cai Q, Yang H, Gao Z, Yang L. Distribution of Malassezia species on the skin of patients with
psoriasis. J Med Mycol. 2021 Jun;31[2]:101111.
[228] Rudramurthy SM, Honnavar P, Chakrabarti A, Dogra S, Singh P, Handa S. Association of Malassezia
species with psoriatic lesions. Mycoses. 2014 Aug;57[8]:483–8.
[229] Dawson TL. Malassezia globosa and restricta: Breakthrough Understanding of the Etiology and
Treatment of Dandruff and Seborrheic Dermatitis through Whole-Genome Analysis.
J Invest Dermatol Symp Proc. 2007 Dec;12[2]:15–9.
[230] Tajima M, Sugita T, Nishikawa A, Tsuboi R. Molecular Analysis of Malassezia Microflora in
Seborrheic Dermatitis Patients: Comparison with Other Diseases and Healthy Subjects.
J Invest Dermatol. 2008 Feb;128[2]:345–51.
[231] Takemoto A, Cho O, Morohoshi Y, Sugita T, Muto M. Molecular characterization of the skin fungal
microbiome in patients with psoriasis. J Dermatol. 2015 Feb;42[2]:166–70.
[232] Tett A, Pasolli E, Farina S, Truong DT, Asnicar F, Zolfo M, Beghini F, Armanini F, Jousson O, De
Sanctis V, Bertorelli R, Girolomoni G, Cristofolini M, Segata N. Unexplored diversity and strain-level
structure of the skin microbiome associated with psoriasis.
NPJ Biofilms Microbiomes. 2017 Jun 22;3[1]:1–12.
[233] Li J, Feng Y, Liu C, Yang Z, de Hoog S, Qu Y, Chen B, Li D, Xiong H, Shi D. Presence of Malassezia
Hyphae Is Correlated with Pathogenesis of Seborrheic Dermatitis.
Microbiol Spectr. 2022 Feb;10[1]:e01169-21.
[234] Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, Wu G, Hoon SS, Raida M, Camattari A, Yang L,
O’Donoghue AJ, Dawson TL. Skin Commensal Malassezia globosa Secreted Protease Attenuates
Staphylococcus aureus Biofilm Formation. J Invest Dermatol. 2018 May;138[5]:1137–45.
[235] Vlachos C, Schulte BM, Magiatis P, Adema GJ, Gaitanis G. Malassezia-derived indoles activate the
aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived
dendritic cells. Br J Dermatol. 2012 Sep;167[3]:496–505.
[236] Casagrande BF, Flückiger S, Linder MT, Johansson C, Scheynius A, Crameri R, Schmid-Grendelmeier
P. Sensitization to the Yeast Malassezia Sympodialis Is Specific for Extrinsic and Intrinsic Atopic
Eczema. J Invest Dermatol. 2006 Nov 1;126[11]:2414–21.
[237] Johansson C, Eshaghi H, Linder MT, Scheynius A, Jakobson E. Positive Atopy Patch Test Reaction to
Malassezia furfur in Atopic Dermatitis Correlates with a T Helper 2-like Peripheral Blood
Mononuclear Cells Response. J Invest Dermatol. 2002 Jun 1;118[6]:1044–51.
[238] Kekki OM, Scheynius A, Poikonen S, Koskinen A, Kautiainen H, Turjanmaa K. Sensitization to
Malassezia in children with atopic dermatitis combined with food allergy. Pediatr Allergy Immunol.
2013 May;24[3]:244–9.
[239] Scalabrin DMF, Bavbek S, Perzanowski MS, Wilson BB, Platts-Mills TAE, Wheatley LM. Use of
specific IgE in assessing the relevance of fungal and dust mite allergens to atopic dermatitis: A
comparison with asthmatic and nonasthmatic control subjects. J Allergy Clin Immunol.
1999 Dec 1;104[6]:1273–9.
[240] Zhang E, Tanaka T, Tajima M, Tsuboi R, Kato H, Nishikawa A, Sugita T. Anti- Malassezia -Specific
IgE Antibodies Production in Japanese Patients with Head and Neck Atopic Dermatitis: Relationship
between the Level of Specific IgE Antibody and the Colonization Frequency of Cutaneous Malassezia
Species and Clinical Severity. J Allergy. 2011 Dec 29;2011:1–5.
[241] Hiragun T, Ishii K, Hiragun M, Suzuki H, Kan T, Mihara S, Yanase Y, Bartels J, Schröder JM, Hide
M. Fungal protein MGL_1304 in sweat is an allergen for atopic dermatitis patients. J Allergy Clin
Immunol. 2013 Sep;132[3]:608-615.e4.
[242] Hiragun M, Hiragun T, Ishii K, Suzuki H, Tanaka A, Yanase Y, Mihara S, Haruta Y, Kohno N, Hide
M. Elevated Serum IgE against MGL_1304 in Patients with Atopic Dermatitis and Cholinergic
Urticaria. Allergol Int. 2014 Mar;63[1]:83–93.
[243] Gehrmann U, Qazi KR, Johansson C, Hultenby K, Karlsson M, Lundeberg L, Gabrielsson S, Scheynius
A. Nanovesicles from Malassezia sympodialis and Host Exosomes Induce Cytokine Responses – Novel
Mechanisms for Host-Microbe Interactions in Atopic Eczema. PLoS One. 2011 Jul 22;6[7]:e21480.
[244] Zhang YJ, Han Y, Sun YZ, Jiang HH, Liu M, Qi RQ, Gao XH. Extracellular vesicles derived from
Malassezia furfur stimulate IL-6 production in keratinocytes as demonstrated in in vitro and in vivo
models. J Dermatol Sci. 2019 Mar;93[3]:168–75.
[245] Sparber F, De Gregorio C, Steckholzer S, Ferreira FM, Dolowschiak T, Ruchti F, Kirchner FR, Mertens
S, Prinz I, Joller N, Buch T, Glatz M, Sallusto F, Leibundgut-Landmann S. The Skin Commensal Yeast
Malassezia Triggers a Type 17 Response that Coordinates Anti-fungal Immunity and Exacerbates Skin
Inflammation. Cell Host Microbe. 2019 Mar;25[3]:389-403.e6.
[246] Miyachi H, Wakabayashi S, Sugihira T, Aoyama R, Saijo S, Koguchi-Yoshioka H, Fujimoto M, Núñez
G, Matsue H, Nakamura Y. Keratinocyte IL-36 Receptor/MyD88 Signaling Mediates Malassezia Induced IL-17–Dependent Skin Inflammation. J Infect Dis. 2021 May 15;223[10]:1753–65.
[247] Balaji H, Heratizadeh A, W


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!