Chapter 13. Taking a Break: Host-Fungi in a Distance Relationship


Pedro H. M. Bürgel, Lucas de O. Las-Casas and Anamelia L. Bocca
Laboratory of Applied Immunology, Institute of Biology, University of Brasília, Brasília, Federal District, Brazil

Part of the book: The Book of Fungal Pathogens


This chapter will explore the main mechanisms used by fungal pathogens to interfere with the optimal immune response developed by the host, focusing mainly on molecules that are freely secreted or encompassed by vesicles. The emphasis will be on two important systemic pathogens: Cryptococcus neoformans and Fonsecea sp. Severe systemic infections caused by fungal pathogens have increased in numbers and clinical importance in the last decades. The rise in immunocompromised individuals is a key factor in this matter, as seen lately in COVID-affected patients receiving immunosuppressive treatment and a higher correlation with fungal infections. Regarding host-pathogen interaction, there is increasing evidence in the literature that shows a vital role of secreted molecules in the course of opportunistic fungal infection. Ultimately, the capacity to externalize potential virulence factors can help the pathogen in several ways, for example evading immune cells, controlling inflammation kinetics, and enhancing dissemination into deeper tissues.

Keywords: cryptococcus, fonsecaea, cryptococcosis, chromoblastomycosis, secreted molecules, extracellular vesicles


[1] Hiscox, J., O’Leary, J., and Boddy, L. (2018). Fungus wars: basidiomycete battles in wood decay.
Stud Mycol., Mar 1, 89, 117–24.
[2] Parapouli, M., Vasileiadis, A., Afendra, A. S., and Hatziloukas, E. (2020). Saccharomyces cerevisiae
and its industrial applications. Vol. 6, AIMS Microbiology., AIMS Press, p. 1–31.
[3] Fleming, A. (1929). On the Antibacterial Action of Cultures of a Penicillium, with Special Reference
to their Use in the Isolation of B. influenzæ. Br J Exp Pathol., 10(3), 226.
[4] Mahato, D. K., Lee, K. E., Kamle, M., Devi, S., Dewangan, K. N., Kumar, P., and Kang, S. G. (2019).
Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control Strategies. Front
Microbiol., Oct 4, 10, 2266.
[5] Matossian, M. K. (1986). Did Mycotoxins Play a Role in Bubonic Plague Epidemics? Perspect Biol
Med., 29(2), 244–56.
[6] Sorgo, A. G., Heilmann, C. J., Brul, S, de Koster, C. G., and Klis, F. M. (2013). Beyond the wall:
Candida albicans secret(e)s to survive. FEMS Microbiol Lett., Jan 1, 338(1), 10–7.
[7] Vivek-Ananth, R. P., Mohanraj, K., Vandanashree, M., Jhingran, A., Craig, J. P., and Samal, A. (2018).
Comparative systems analysis of the secretome of the opportunistic pathogen Aspergillus fumigatus
and other Aspergillus species. Sci Reports, 2018 81. Apr 26, 8(1), 1–16.
[8] Almeida, F., Wolf, J. M., and Casadevall, A. (2015). Virulence-Associated Enzymes of Cryptococcus
neoformans. Eukaryot Cell., Dec, 14(12), 1173–85.
[9] Pirofski, L. A., and Casadevall, A. (2017). Immune-mediated damage completes the parabola:
Cryptococcus neoformans pathogenesis can reflect the outcome of a weak or strong immune response.
mBio., 8, e02063-17
[10] Jabra-Rizk, M. A., Kong, E. F., Tsui, C., Nguyen, M. H., Clancy, C. J., Fidel, P. L., and Noverr, M.
(2016). Candida albicans pathogenesis: Fitting within the host-microbe damage response framework.
Infect Immun., 84(10), 2724–39.
[11] Cross, A. S. (2008). What is a virulence factor? Crit Care., Jan, 12(6), 196.
[12] Girard, V., Dieryckx, C., Job, C., and Job, D. (2013). Secretomes: The fungal strike force. Proteomics.,
13, 597–608.
[13] Krijger, J. J., Thon, M. R., Deising, H. B., and Wirsel, S. G. R. (2014). Compositions of fungal
secretomes indicate a greater impact of phylogenetic history than lifestyle adaptation. BMC Genomics.,
Aug 27, 15(1), 1–19.
[14] Karkowska-Kuleta, J., Rapala-Kozik, M., and Kozik, A. (2009). Fungi pathogenic to humans:
Molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus
fumigatus. Acta Biochim Pol., 56(2), 211–24.
[15] Naglik, J. R., Gaffen, S. L., and Hube, B. (2019). Candidalysin: discovery and function in Candida
albicans infections. Curr Opin Microbiol., Dec 1, 52, 100–9.
[16] Homer, C. M., Summers, D. K., Goranov, A. I., Clarke, S. C., Wiesner, D. L, Diedrich J. K., and
Moresco, J. J. (2016). Intracellular Action of a Secreted Peptide Required for Fungal Virulence. Cell
Host Microbe., Jun 8, 19(6), 849–64.
[17] Jin, J. H., Lee, K. T., Hong, J., Lee, D., Jang, E. H., Kim, J. Y., Lee, Y., Lee, S. H., So, Y. S., Jung, K.
W., Lee, D. G., Jeong, E., Lee, M., Jang, Y. B., Choi, Y., Lee, M. H., Kim, J. S., Yu, S. R., Choi, J. T.,
La, J. W., Choi, H., Kim, S. W., Seo, K. j., lee, Y., Thak, E. J., Choi, J., Averette, A. F., Lee, Y. H.,
Heitman, J., Kang, H. A., Cheong, E., and Bahn, Y. S. (2020). Genome-wide functional analysis of
phosphatases in the pathogenic fungus Cryptococcus neoformans. Nat Commun., Aug 24, 11(1), 1–17.
[18] Conesa, A., Punt, P. J., Van Luijk, N., and Van den Hondel, C. A. M. J. J. (2001). The secretion pathway
in filamentous fungi: A biotechnological view. Vol. 33, Fungal Genetics and Biology., Academic Press
Inc., p. 155–71.
[19] Feizi, A., Österlund, T., Petranovic, D., Bordel, S., and Nielsen, J. (2013). Genome-Scale Modeling of
the Protein Secretory Machinery in Yeast. PLoS One., May 7, 8(5), 63284.
[20] López-Villar, E., Monteoliva, L., Larsen, M. R., Sachon, E., Shabaz, M., Pardo, M., Pla, J., Gil, C.,
Roepstorff, P., and Nombela, C. (2006). Genetic and proteomic evidences support the localization of
yeast enolase in the cell surface. Proteomics., 6 Suppl 1.
[21] Gil-Bona, A., Llama-Palacios, A., Parra, C. M., Vivanco, F., Nombela, C., Monteoliva, L., and Gil, C.
(2015). Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in
Candida albicans. J Proteome Res., Jan 2, 14(1), 142–53.
[22] Rabouille, C., Malhotra, V., and Nickel, W. (2012). Diversity in unconventional protein secretion. J
Cell Sci., Nov 15, 125(22), 5251–5.
[23] Miura, N., and Ueda, M. (2018). Evaluation of unconventional protein secretion by Saccharomyces
cerevisiae and other fungi. Vol. 7, Cells. Multidisciplinary Digital Publishing Institute (MDPI).
[24] Giuliani, F., Grieve, A., and Rabouille, C. (2011). Unconventional secretion: a stress on GRASP. Curr
Opin Cell Biol., Aug 1, 23(4), 498–504.
[25] Casadevall, A., and Perfect, J. R. (1998). Cryptococcus neoformans.
Washington, DC.: ASM Press, 542p.
[26] Velagapudi, R., Hsueh, Y-P., Geunes-Boyer, S., Wright, J. R., and Heitman, J. (2009). Spores as
Infectious Propagules of Cryptococcus neoformans. Infect Immun., Oct 1, 77(10), 4345–55.
[27] Giles, S. S., Dagenais, T. R. T., Botts, M. R., Keller, N. P., and Hull, C. M. (2009). Elucidating the
Pathogenesis of Spores from the Human Fungal Pathogen Cryptococcus neoformans. Infect Immun.,
Aug 1, 77(8), 3491–500.
[28] Botts, M. R., and Hull, C. M. (2010). Dueling in the lung: How Cryptococcus spores race the host for
survival. Curr Opin Microbiol., Aug, 13(4), 437.
[29] Sorrell T., and Ellis D. (1997). Ecology of Cryptococcus neoformans. Rev Iberoam Micol., 14, 42–3.
[30] Steenbergen, J. N., Shuman, H. A., and Casadevall, A. (2001). Cryptococcus neoformans interactions
with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in
macrophages. Proc Natl Acad Sci U S A., 98(26), 15245–50.
[31] De, G. R., Araújo, S., Freitas, G. J. C., Fonseca, F. L., Emilio, P., Leite, C., Rocha, G. M., de Souza,
W., Santos, D. A., and Frases, S. (2017). The environmental yeast Cryptococcus liquefaciens produces
capsular and secreted polysaccharides with similar pathogenic properties to those of C. neoformans.
Sci Rep., Apr 25, 7(1), 1–12.
[32] Pennisi, M. G., Hartmann, K., Lloret, A., Ferrer, L., Addie, D., Belák, S., Boucraut-Baralon, C.,
Egberink, H., Frymus, T., Gruffydd-Jones, T., Hosie, M. J., Lutz, H., Marsilio, F., Möstl, K., Radford,
A. D., Thiry, E., Truyen, U., and Horzinek, M. C. (2013). Cryptococcosis in cats: ABCD guidelines on
prevention and management. J Feline Med Surg., 15(7), 611–8.
[33] Miller, W. G., Padhye, A. A., Van Bonn, W., Jensen, E., Brandt, M. E., and Ridgway, S. H. (2002).
Cryptococcosis in a Bottlenose Dolphin (Tursiops truncatus) Caused by Cryptococcus neoformans var.
gattii. J Clin Microbiol., 40(2), 721.
[34] Kronstad, J., Saikia, S., Nielson, E. D., Kretschmer, M., Jung, W., Hu, G., Geddes, J. M. H., Griffiths,
E. J., Choi, J., Cadieux, B., Caza, M., and Attarian, R. (2012). Adaptation of Cryptococcus neoformans
to Mammalian Hosts: Integrated Regulation of Metabolism and Virulence.
Eukaryot Cell., Feb, 11(2), 109.
[35] Hommel, B., Sturny-Leclère, A., Volant, S., Veluppillai, N., Duchateau, M., Yu, C. H., Hourdel, V.,
Varet, H., Mariette, C., Perfect, J. R., Casadevall, A., Dromer, F., and Alanio, A. (2019). Cryptococcus
neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype.
PLOS Pathog., Jul 1, 15(7), e1007945.
[36] O’Meara, T., and Alspaugh, J. (2012). The Cryptococcus neoformans capsule: a sword and a shield.
Clin Microbiol Rev., Jul, 25(3), 387–408.
[37] Zaragoza, O., Rodrigues, M. L., De Jesus, M., Frases, S., Dadachova, E., and Casadevall, A. (2009).
The capsule of the fungal pathogen Cryptococcus neoformans. . 1st ed. Vol. 68, Advances in applied
microbiology., Elsevier Inc., 133–216 p.
[38] Reuwsaat, J. C. V., Motta, H., Garcia, A. W. A., Vasconcelos, C. B, Marques, B. M., Oliveira, N. K.,
Rodrigues, J., Ferrareze, P. A., G., Frases, S., Lopes, W., Barcellos, V. A., Squizani, E. D., Horta, J.
A., Schrank, A., Rodrigues, M. L., Staats, C. C., Vainstein, M. H., and Kmetzsch, L. (2018). A
Predicted Mannoprotein Participates in Cryptococcus gattii Capsular Structure. mSphere., Apr 25, 3(2).
[39] Frases, S., Nimrichter, L., Viana, N. B., Nakouzi, A., and Casadevall, A. (2008). Cryptococcus
neoformans Capsular Polysaccharide and Exopolysaccharide Fractions Manifest Physical, Chemical,
and Antigenic Differences. Eukaryot Cell., Feb, 7(2), 319–27.
[40] Mcclelland, E. E., Bernhardt, P., and Casadevall, A. (2006). Estimating the relative contributions of
virulence factors for pathogenic microbes. Infect Immun., Mar, 74(3), 1500–4.
[41] Ko, Y. J., Yu, Y. M., Kim, G. B., Lee, G. W., Maeng, P. J., Kim, S., Floyd, A., Heitman, J., and Bahn,
Y. S. (2009). Remodeling of Global Transcription Patterns of Cryptococcus neoformans Genes
Mediated by the Stress-Activated HOG Signaling Pathways. Eukaryot Cell., Aug, 8(8), 1197.
[42] García-Rodas, R., and Zaragoza, O. (2012). Catch me if you can: Phagocytosis and killing avoidance
by Cryptococcus neoformans. FEMS Immunol Med Microbiol., Mar, 64(2), 147–61.
[43] Esher, S. K., Zaragoza, O., and Alspaugh, J. A. (2018). Cryptococcal pathogenic mechanisms: a
dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz., Apr 16, 113(7), 1–15.
[44] Rodrigues, M. L., and Djordjevic, J. T. (2012). Unravelling Secretion in Cryptococcus neoformans:
More than One Way to Skin a Cat. Mycopathologia., 173, 407–18.
[45] Frases, S., Pontes, B., Nimrichter, L., Viana, N. B., Rodrigues, M. L., and Casadevall, A. (2099).
Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules. Proc Natl
Acad Sci U S A., Jan 27, 106(4), 1228–33.
[46] Vecchiarelli, A., Pericolini, E., Gabrielli, E., Kenno, S., Perito, S., Cenci, E., and Monari, C. (2013).
Elucidating the immunological function of the Cryptococcus neoformans capsule.
Future Microbiol., 8(9), 1107–16.
[47] Monari, C., Kozel, T. R., Paganelli, F., Pericolini, E., Perito, S., Bistoni, F., Casadevall, A., and
Vecchiarelli, A. (2006). Microbial Immune Suppression Mediated by Direct Engagement of Inhibitory
Fc Receptor. J Immunol., Nov 15, 177(10), 6842–51.
[48] Tucker, S. C., and Casadevall, A. (2002). Replication of Cryptococcus neoformans in macrophages is
accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide
in the cytoplasm. Proc Natl Acad Sci U S A., Mar 5, 99(5), 3165–70.
[49] Retini, C., Vecchiarelli, A., Monari, C., Bistoni, F., and Kozel, T. R. (1998). Encapsulation of
Cryptococcus neoformans with glucuronoxylomannan inhibits the antigen-presenting capacity of
monocytes. Infect Immun., 66(2), 664–9.
[50] Walenkamp, A. M. E., Chaka, W. S., Verheul, A. F. M., Vaishnav, V. V., Cherniak, R., Coenjaerts, F.
E. J., and Hoepelman, I. M. (1999). Cryptococcus neoformans and its cell wall components induce
similar cytokine profiles in human peripheral blood mononuclear cells despite differences in structure.
FEMS Immunol Med Microbiol., Dec 1, 26(3–4), 309–18.
[51] Monari, C., Pericolini, E., Bistoni, G., Casadevall, A., Kozel, T. R., Vecchiarelli, A. (2005).
Cryptococcus neoformans Capsular Glucuronoxylomannan Induces Expression of Fas Ligand in
Macrophages. J Immunol., Mar 4, 174(6), 3461–8.
[52] Villena, S. N., Pinheiro, R. O., Pinheiro, C. S., Nunes, M. P., Takiya, C. M., Dosreis, G. A., Previato,
J. O., Mendonça-Previato, L., and Freire-de-Lima, C. G. (2008). Capsular polysaccharides
galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage
apoptosis mediated by Fas ligand. Cell Microbiol., Jun 1, 10(6), 1274–85.
[53] Chiapello, L. S., Baronetti, J. L., Aoki, M. P., Gea, S., Rubinstein, H., and Masih, D. T. (2004).
Immunosuppression, interleukin-10 synthesis and apoptosis are induced in rats inoculated with
Cryptococcus neoformans glucuronoxylomannan. Immunology., Nov, 113(3), 392.
[54] Grechi, J., Marinho-Carvalho, M., Zancan, P., Cinelli, L. P., Gomes, A. M. O., Rodrigues, M. L.,
Nimrichter, L., and Sola-Penna, M. (2011). Glucuronoxylomannan from Cryptococcus neoformans
down-regulates the enzyme 6-phosphofructo-1-kinase of macrophages.
J Biol Chem., Apr 29, 286(17), 14820–9.
[55] Chaka, W., Verheul, A. F. M., Vaishnav, V. V., Cherniak, R., Scharringa, J., Verhoef, J., Snippe, H.,
and Hoepelman, I. M. (1997). Cryptococcus neoformans and cryptococcal glucuronoxylomannan,
galactoxylomannan, and mannoprotein induce different levels of tumor necrosis factor alpha in human
peripheral blood mononuclear cells. Infect Immun., 65(1), 272.
[56] LaRocque-de-Freitas, I. F., Rocha, J. D. B., Nunes, M. P., Oliveira, P. A. V., Nascimento D de O.,
Freire-de-Lima L., Takiya, C. M., Morrot, A., Decote-Ricardo, D., Previato, J. O., Dosreis, G. A.,
Mendonça-Previato, L., and Freire-de-Lima, C. G.. (2018). Involvement of the capsular GalXM induced
IL-17 cytokine in the control of Cryptococcus neoformans infection. Sci Rep., Dec 1, 8(1), 16378.
[57] Rocha, J. D. B., Nascimento, M. T. C., Decote-Ricardo, D., Côrte-Real, S., Morrot, A., Heise, N.,
Nunes, M. P., Previato, J. O., endonça-Previato, L., Dosreis G. A., Saraiva, E. M., and Freire-de-Lima,
C. G. (2015). Capsular polysaccharides from Cryptococcus neoformans modulate production of
neutrophil extracellular traps (NETs) by human neutrophils. Sci Rep., Jan 26, 5(1), 1–10.
[58] Siddiqui, A. A., Shattock, R. J., and Harrison, T. S. (2006). Role of Capsule and Interleukin-6 in
Long Term Immune Control of Cryptococcus neoformans Infection by Specifically Activated Human
Peripheral Blood Mononuclear Cells. Infect Immun., Sep, 74(9), 5302.
[59] Moyrand, F., Fontaine, T., and Janbon, G. (2007). Systematic capsule gene disruption reveals the
central role of galactose metabolism on Cryptococcus neoformans virulence.
Mol Microbiol., May 1, 64(3), 771–81.
[60] Pericolini, E., Cenci, E., Monari, C., De Jesus, M., Bistoni, F., Casadevall, A., and Vecchiarelli, A.
(2006). Cryptococcus neoformans capsular polysaccharide component galactoxylomannan induces
apoptosis of human T-cells through activation of caspase-8. Cell Microbiol., Feb, 8(2), 267–75.
[61] Levitz, S. M., Nong, S. H., Mansour, M. K., Huang, C., and Specht, C. A. (2001). Molecular
characterization of a mannoprotein with homology to chitin deacetylases that stimulates T cell
responses to Cryptococcus neoformans. Proc Natl Acad Sci., Aug 28, 98(18), 10422–7.
[62] Mansour, M. K., Schlesinger, L. S., and Levitz, S. M. (2002). Optimal T Cell Responses to
Cryptococcus neoformans Mannoprotein Are Dependent on Recognition of Conjugated Carbohydrates
by Mannose Receptors. J Immunol., Mar 15, 168(6), 2872–9.
[63] Dan, J. M., Wang, J. P., Lee, C. K., and Levitz, S. M. (2008). Cooperative Stimulation of Dendritic
Cells by Cryptococcus neoformans Mannoproteins and CpG Oligodeoxynucleotides.
Dromer F, editor. PLoS One., Apr 30, 3(4), e2046.
[64] Cadieux, B., Lian, T., Hu, G., Wang, J., Biondo, C., Teti, G., Liu, V., Murphy, M. E. P., Creagh, A. L.,
and Kronstad, J. W. (2013). The Mannoprotein Cig1 Supports Iron Acquisition From Heme and
Virulence in the Pathogenic Fungus Cryptococcus neoformans. J Infect Dis., Apr 15, 207(8), 1339.
[65] Teixeira, P. A. C., Penha, L. L., Mendonça-Previato, L., and Previato, J. O. (2014). Mannoprotein
MP84 mediates the adhesion of Cryptococcus neoformans to epithelial lung cells.
Front Cell Infect Microbiol., 4(AUG), 106.
[66] Han, L. T., Wu, L., and Liu, T. B. (2020). A Predicted Mannoprotein Cmp1 Regulates Fungal Virulence
in Cryptococcus neoformans. Pathogens., Nov 1, 9(11), 1–18.
[67] Guo, C., Chen, M., Fa, Z., Lu, A., Fang, W., Sun, B., Chen, C., Liao, W., and Meng, G. (2014).
Acapsular Cryptococcus neoformans activates the NLRP3 inflammasome.
Microbes Infect., Oct, 16(10), 845–54.
[68] Chen, M., Xing, Y., Lu, A., Fang, W., Sun, B., Chen, C., Liao, W., and Meng, G. (2015). Internalized
Cryptococcus neoformans Activates the Canonical Caspase-1 and the Noncanonical Caspase-8
Inflammasomes. J Immunol., 195(10), 4962–72.
[69] Bürgel, P. H., Marina, C. L., Saavedra, P. H. V., Albuquerque, P., De Oliveira, S. A. M., Veloso Janior
PH de H., de Castro, R. A., Heyman, H. M., Coelho, C., Cordero, R. J. B., Casadevall, A., Nosanchuk,
J. D., Nakayasu, J. D., Nakayasu, E. S., May, R. C., Tavares, A. H., and Bocca, A. L. (2020).
Cryptococcus neoformans Secretes Small Molecules That Inhibit IL-1 β Inflammasome-Dependent
Secretion. Mediators Inflamm., Dec 2020.
[70] Chaskes, S., Tyndall, R. L., Richmond, V., and Little, G. N. (1975). Pigment production by
Cryptococcus neoformans from para- and ortho-Diphenols: effect of the nitrogen source.
J Clin Microbiol., 1(6), 509–14.
[71] Kwon Chung, K. J., Tom, W. K., and Costa, J. L. (1983). Utilization of indole compounds by
Cryptococcus neoformans to produce a melanin-like pigment. J Clin Microbiol., 18(6), 1419–21.
[72] Nosanchuk, J. D., Rudolph, J., Rosas, A. L., and Casadevall, A. (1999). Evidence that Cryptococcus
neoformans is melanized in pigeon excreta: Implications for pathogenesis.
Infect Immun., 67(10), 5477–9.
[73] Cordero, R. J. B., and Casadevall, A. (2017). Functions of fungal melanin beyond virulence.
Fungal Biol Rev., Mar 1, 31(2), 99–112.
[74] Fu, M. S., Liporagi-Lopes, L. C., dos Santos Júnior, S. R., Tenor, J. L., Perfect, J. R., Cuomo, C. A.,
and Casadevall, A. (2021). Amoeba predation of Cryptococcus neoformans results in pleiotropic
changes to traits associated with virulence. MBio., 12(2).
[75] Wang, Y., Aisen, P., and Casadevall, A. (1995). Cryptococcus neoformans melanin and virulence:
mechanism of action. Infect Immun., 63(8), 3131–6.
[76] Liu, L., Tewari, R. P., and Williamson, P. R. (1999). Laccase protects Cryptococcus neoformans from
antifungal activity of alveolar macrophages. Infect Immun., 67(11), 6034–9.
[77] Frazão, S de O., de Sousa, H. R., da Silva, L. G., Folha, J. D. S., Gorgonha KC de M., de Oliveira G.
P., Felipe, M. S. S., Silva-Pereira, I., Casadevall, A., Nicola, A. M., and Albuquerque, P. (2020).
Laccase affects the rate of Cryptococcus neoformans nonlytic exocytosis from macrophages.
MBio., Sep 1, 11(5), 1–6.
[78] Mednick, A. J., Nosanchuk, J. D., and Casadevall, A. (2005). Melanization of Cryptococcus
neoformans Affects Lung Inflammatory Responses during Cryptococcal Infection.
Infect Immun., Apr, 73(4), 2012.
[79] Barluzzi, R., Brozzetti, A., Mariucci, G., Tantucci, M., Neglia, R. G., Bistoni, F., and Blasi, E. (2000).
Establishment of protective immunity against cerebral cryptococcosis by means of an avirulent, non
melanogenic Cryptococcus neoformans strain. J Neuroimmunol., Sep 22, 109(2), 75–86.
[80] Tajima, K., Yamanaka, D., Ishibashi K ichi, Adachi, Y., and Ohno, N. (2019). Solubilized melanin
suppresses macrophage function. FEBS Open Bio., Apr 1, 9(4), 791–800.
[81] Rosas, Á. L., MacGill, R. S., Nosanchuk, J. D., Kozel, T. R., and Casadevall, A. (2002). Activation of
the alternative complement pathway by fungal melanins. Clin Diagn Lab Immunol., 9(1), 144–8.
[82] Ristowi, L. C., and Davisi, J. M. (2021). The granuloma in cryptococcal disease.
PLOS Pathog., Mar 1, 17(3), e1009342.
[83] Nosanchuk, J. D., and Casadevall, A. (2003). Budding of melanized Cryptococcus neoformans in the
presence or absence of L-dopa. Microbiology., Jul 1, 149(7), 1945–51.
[84] Morris-Jones, R., Gomez, B. L., Diez, S., Uran, M., Morris-Jones, S. D., Casadevall, A., Nosanchuk,
J. D., and Hamilton, A. J. (2005). Synthesis of melanin pigment by Candida albicans in vitro and
during infection. Infect Immun., Sep, 73(9), 6147–50.
[85] Gómez, B. L., Nosanchuk, J. D., Díez, S., Youngchim, S., Aisen, P., Cano, L. E., Restrepo, A.,
Casadevall, A., and Hamilton, A. J. (2001). Detection of melanin-like pigments in the dimorphic fungal
pathogen Paracoccidioides brasiliensis in vitro and during infection. Infect Immun., 69(9), 5760–7.
[86] Eisenman, H. C., Frases, S., Nicola, A. M., Rodrigues, M. L., and Casadevall, A. (2009). Vesicle
associated melanization in Cryptococcus neoformans. Microbiology., 155(Pt 12), 3860.
[87] Baker, L. G., Specht, C. A., Donlin, M. J., and Lodge, J. K. (2007). Chitosan, the deacetylated form of
chitin, is necessary for cell wall integrity in Cryptococcus neoformans.
Eukaryot Cell., May, 6(5), 855–67.
[88] Casadevall, A., Steenbergen, J. N., and Nosanchuk, J. D. (2003). “Ready made” virulence and “dual
use” virulence factors in pathogenic environmental fungi – The Cryptococcus neoformans paradigm.
Curr Opin Microbiol., 6(4), 332–7.
[89] Zimmer, B. L., and Roberts, G. D. (1979). Rapid selective urease test for presumptive identification of
Cryptococcus neoformans. J Clin Microbiol., 10(3), 380.
[90] Cox, G. M., Mukherjee, J., Cole, G. T., Casadevall, A., and Perfect, J. R. (2000). Urease as a virulence
factor in experimental cryptococcosis. Infect Immun., Feb, 68(2), 443–8.
[91] Rutherford, J. C. (2014). The Emerging Role of Urease as a General Microbial Virulence Factor.
PLoS Pathog., 10(5).
[92] Singh, A., Panting, R. J., Varma, A., Saijo, T., Waldron, K. J., Jong, A., Ngamskulrungroj, P., Chang,
Y. C., Rutherford, J. C., and Kwon-Chung, K. J. (2013). Factors Required for Activation of Urease as
a Virulence Determinant in Cryptococcus neoformans. MBio., 4(3), 220–33.
[93] Shi, M., Li, S. S., Zheng, C., Jones, G. J., Kim, K. S., Zhou, H., Kubes, P., and Mody, C. H. (2010).
Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in
mouse brain. J Clin Invest., May 3, 120(5), 1683.
[94] Olszewski, M. A., Noverr, M. C., Chen, G-H., Toews, G. B., Cox, G. M., Perfect, J. R., and Huffnagle,
G. B. (2004). Urease Expression by Cryptococcus neoformans Promotes Microvascular Sequestration,
Thereby Enhancing Central Nervous System Invasion. Am J Pathol., May, 164(5), 1761–71.
[95] Zaragoza, O. (2019). Basic principles of the virulence of Cryptococcus.
Virulence., Jan 1, 10(1), 490–501.
[96] Osterholzer, J. J., Surana, R., Milam, J. E., Montano, G. T., Chen, G-H., Sonstein, J., Curtis, J. L.,
Huffnagle, G. B., Toews, G. B., and Olszewski, M. A. (2009). Cryptococcal Urease Promotes the
Accumulation of Immature Dendritic Cells and a Non-Protective T2 Immune Response within the
Lung. Am J Pathol., Mar, 174(3), 932–43.
[97] Fu, M. S., Coelho, C., De Leon-Rodriguez, C. M., Rossi, D. C. P., Camacho, E., Jung, E. H., Kulkarni,
M., and Casadevall, A. (2018). Cryptococcus neoformans urease affects the outcome of intracellular
pathogenesis by modulating phagolysosomal pH. PLoS Pathog., 14(6).
[98] Henry, J., Guillotte, A., Luberto, C., and Del Poeta, M. (2011). Characterization of inositol
phospho sphingolipid-phospholipase C 1 (Isc1) in Cryptococcus neoformans reveals unique
biochemical features. FEBS Lett., Feb 18, 585(4), 635.
[99] Chen, S. C. A., Wright, L. C., Santangelo, R. T., Muller, M., Moran, V. R., Kuchel, P. W., and Sorrell,
T. C. (1997). Identification of extracellular phospholipase B, lysophospholipase, and acyltransferase
produced by Cryptococcus neoformans. Infect Immun., 65(2), 405.
[100] Djordjevic, J. T. (2010). Role of phospholipases in fungal fitness, pathogenicity, and drug development
– lessons from Cryptococcus neoformans. Front Microbiol., 1(NOV), 125.
[101] Aloulou, A., Rahier, R., Arhab, Y., Noiriel, A., and Abousalham, A. (2018). Phospholipases: An
overview. In: Methods in Molecular Biology. Methods Mol Biol., p. 69–105.
[102] Cox, G. M., McDade, H. C., Chen, S. C., Tucker, S. C., Gottfredsson, M., Wright, L. C., Sorrell, T. C.,
Leidich, S. D., Casadevall, A., Ghannoum, M. A., and Perfect, J. R. (2001). Extracellular phospholipase
activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol., Jan, 39(1), 166–75.
[103] Siafakas, A. R., Wright, L. C., Sorrell, T. C., and Djordjevic, J. T. (2006). Lipid rafts in Cryptococcus
neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide
dismutase. Eukaryot Cell., Mar, 5(3), 488–98.
[104] Wright, L. C., Chen, S. C. A., Wilson, C. F., Simpanya, M. F., Blackstock, R., Cox, G. M., Murphy, J.
W., and Sorrell, T. C. (2002). Strain-dependent effects of environmental signals on the production of
extracellular phospholipase by Cryptococcus neoformans.
FEMS Microbiol Lett., Apr 1, 209(2), 175–81.
[105] Evans, R. J., Li, Z., Hughes, W. S., Djordjevic, J. T., Nielsen, K., and May, R. C. (2015). Cryptococcal
Phospholipase B1 Is Required for Intracellular Proliferation and Control of Titan Cell Morphology
during Macrophage Infection. Infect Immun., 83(4), 1296.
[106] Noverr, M. C., Cox, G. M., Perfect, J. R., and Huffnagle, G. B. (2003). Role of PLB1 in Pulmonary
Inflammation and Cryptococcal Eicosanoid Production. Infect Immun., Mar 1, 71(3), 1538.
[107] Smith, L. M., Dixon, E. F., and May, R. C. (2014). The fungal pathogen Cryptococcus neoformans
manipulates macrophage phagosome maturation. Cell Microbiol., 1–12.
[108] Ganendren, R., Carter, E., Sorrell, T., Widmer, F., and Wright, L. (2006). Phospholipase B activity
enhances adhesion of Cryptococcus neoformans to a human lung epithelial cell line.
Microbes Infect., Apr 1, 8(4), 1006–15.
[109] Santangelo, R., Zoellner, H., Sorrell, T., Wilson, C., Donald, C., Djordjevic, J., Shounan, Y., Wright,
L. (2004). Role of Extracellular Phospholipases and Mononuclear Phagocytes in Dissemination of
Cryptococcosis in a Murine Model. Infect Immun., Apr, 72(4), 2229.
[110] Chayakulkeeree, M., Sorrell, T. C., Siafakas, A. R., Wilson, C. F., Pantarat, N., Gerik, K. J., Boadle,
R., and Djordjevic, J. T. (2008). Role and mechanism of phosphatidylinositol-specific phospholipase
C in survival and virulence of Cryptococcus neoformans. Mol Microbiol., Aug 1, 69(4), 809–26.
[111] Shea, J. M., Kechichian, T. B., Luberto, C., and Del Poeta, M. (2006). The Cryptococcal Enzyme
Inositol Phosphosphingolipid-Phospholipase C Confers Resistance to the Antifungal Effects of
Macrophages and Promotes Fungal Dissemination to the Central Nervous System.
Infect Immun., Oct, 74(10), 5977.
[112] Zhu, X., and Williamson, P. R. (2004). Role of laccase in the biology and virulence of Cryptococcus
neoformans. FEMS Yeast Res., Oct 1, 5(1), 1–10.
[113] Salas, S. D., Bennett, J. E., Kwon-Chung, K. J., Perfect, J. R., and Williamson, P. R. (1996).
Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans.
J Exp Med., Aug 1, 184(2), 377–86.
[114] Cordero, R. J. B., Camacho, E., and Casadevall, A. (2020). Melanization in Cryptococcus neoformans
requires complex regulation. MBio., Jan 1, 11(1).
[115] Zhu, X., Gibbons, J., Garcia-Rivera, J., Casadevall, A., and Williamson, P. R. (2001). Laccase of
Cryptococcus neoformans Is a Cell Wall-Associated Virulence Factor. Infect Immun., 69(9), 5589.
[116] Qiu, Y., Davis, M. J., Dayrit, J. K., Hadd, Z., Meister, D. L., Osterholzer, J. J., Williamson, P. R., and
Olszewski, M. A. (2012). Immune Modulation Mediated by Cryptococcal Laccase Promotes
Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice.
PLoS One., Oct 22, 7(10), e47853.
[117] Abreu, I. A., and Cabelli, D. E. (2010). Superoxide dismutases – a review of the metal-associated
mechanistic variations. Biochim Biophys Acta – Proteins Proteomics., Feb 1, 1804(2), 263–74.
[118] Smith, A. D., Garcia-Santamarina, S., Ralle, M., Loiselle, D. R., Haystead, T. A., and Thiele, D. J.
(2021). Transcription factor-driven alternative localization of Cryptococcus neoformans superoxide
dismutase. J Biol Chem., Jan 1, 296.
[119] Cox, G. M., Harrison, T. S., McDade, H. C., Taborda, C. P., Heinrich, G., Casadevall, A., and Perfect,
J. R. (2003). Superoxide Dismutase Influences the Virulence of Cryptococcus neoformans by Affecting
Growth within Macrophages. Infect Immun., Jan 1, 71(1), 173–80.
[120] Giles, S. S., Batinić-Haberle, I., Perfect, J. R., and Cox, G. M. (2005). Cryptococcus neoformans
Mitochondrial Superoxide Dismutase: an Essential Link between Antioxidant Function and High
Temperature Growth. Eukaryot Cell., Jan, 4(1), 46.
[121] Köhn, M. (2020). Turn and Face the Strange: § A New View on Phosphatases. ACS Cent Sci., Apr 22,
6(4), 467–77.
[122] Collopy-Junior, I., Esteves, F. F., Nimrichter, L., Rodrigues, M. L., Alviano, C. S., and Meyer Fernandes, J. R. (2006).
An ectophosphatase activity in Cryptococcus neoformans. FEMS Yeast Res., Nov 1, 6(7), 1010–7.
[123] Lev, S., Crossett, B., Cha, S. Y., Desmarini, D., Li, C., Chayakulkeeree, M., Wilson, C. F., Williamson,
P. R., Sorrell, T. C. and Djordjevic, J. T. (2014). Identification of Aph1, a Phosphate-Regulated,
Secreted, and Vacuolar Acid Phosphatase in Cryptococcus neoformans. MBio., Sep 16, 5(5).
[124] Sánchez, M., and Colom, F. (2010). Extracellular DNase activity of Cryptococcus neoformans and
Cryptococcus gattii. Rev Iberoam Micol., Jan, 27(1), 10–3.
[125] Ruma-Haynes, P., Brownlee, A. G., and Sorrell, T. C. (2000). A rapid method for detecting
extracellular proteinase activity in Cryptococcus neoformans and a survey of 63 isolates.
J Med Microbiol., Aug 1, 49(8), 733–7.
[126] Chen, L. C., Blank, E. S., and Casadevall, A. (1996). Extracellular proteinase
activity of Cryptococcus neoformans. Clin Diagn Lab Immunol., 3(5), 570.
[127] Vu, K., Tham, R., Uhrig, J. P., Thompson, G. R., Na Pombejra, S., Jamklang, M., Bautos, J. M., and
Gelli, A. (2014). Invasion of the Central Nervous System by Cryptococcus neoformans Requires a
Secreted Fungal Metalloprotease. MBio., Jun 3, 5(3).
[128] Aaron, P. A., Vu, K., and Gelli, A. (2020). An antivirulence approach for preventing Cryptococcus
neoformans from crossing the blood-brain barrier via novel natural product inhibitors of a fungal
metalloprotease. MBio., Jul 1, 11(4), 1–15.
[129] Clarke, S. C., Dumesic, P. A., Homer, C. M., O’Donoghue, A. J., La Greca, F., Pallova, L., Majer, P.,
Madhani, H. D., and Craik, C. S. (2016). Integrated Activity and Genetic Profiling of Secreted
Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival
and Virulence. PLOS Pathog., Dec 15, 12(12), e1006051.
[130] Coelho, C., and Casadevall, A. (2019). Answers to naysayers regarding microbial extracellular
vesicles. Biochem Soc Trans., Aug 30, 47(4), 1005–12.
[131] Takeo, K., Uesaka, I., Uehira, K., and Nishiura, M. (1973). Fine structure of Cryptococcus neoformans
grown in vitro as observed by freeze-etching. J Bacteriol., Mar, 113(3), 1442–8.
[132] Anderson, J., Mihalik, R., and Soll, D. R. (1990). Ultrastructure and antigenicity of the unique cell wall
pimple of the Candida opaque phenotype. J Bacteriol., 172(1), 224–35.
[133] Rodrigues, M. L., Nimrichter, L., Oliveira, D. L., Frases, S., Miranda, K., Zaragoza, O., Alvarez, M.,
Nakouzi, A., Feldmesser, M., and Casadevall, A. (2007). Vesicular polysaccharide export in
Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport.
Eukaryot Cell., 6(1), 48–59.
[134] Gil-Bona, A., Llama-Palacios, A., Parra, C. M., Vivanco, F., Nombela, C., Monteoliva, L., and Gil, C.
(2015). Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in
Candida albicans. J Proteome Res., Jan 2, 14(1), 142–53.
[135] Ikeda, M. A. K., De Almeida, J. R. F., Jannuzzi, G. P., Cronemberger-Andrade, A., Torrecilhas, A. C.
T., Moretti, N. S., da Cunha, J. P. C., de Almeida, S. R., and Ferreira, K. S. (2018). Extracellular
vesicles from Sporothrix brasiliensis are an important virulence factor that induce an increase in fungal
burden in experimental sporotrichosis. Front Microbiol., Oct 2, 9(OCT).
[136] Zhao, K., Bleackley, M., Chisanga, D., Gangoda, L., Fonseka, P., Liem, M., Kalra, H., Saffar, H. A.,
kumar, S. K. K., Ang, C-G., Adda, C. G., Jiang, L., Yap, K., Poon, I. K., Lock, P., Bulone, V.,
Anderson, M. and Mathivanan, S. (2019). Extracellular vesicles secreted by Saccharomyces cerevisiae
are involved in cell wall remodelling. Commun Biol., Aug 9, 2(1) 1–13.
[137] Gill, S., Catchpole, R., and Forterre, P. (2019). Extracellular membrane vesicles in the three domains
of life and beyond. FEMS Microbiol Rev., May 1, 43(3), 273–303.
[138] Rizzo, J., Taheraly, A., and Janbon, G. (2021). Structure, composition and biological properties of
fungal extracellular vesicles. microLife., Dec 15, 2(2), 9.
[139] Piffer, A. C., Kuczera, D., Rodrigues, M. L., and Nimrichter, L. (2021). The paradoxical and still
obscure properties of fungal extracellular vesicles. Mol Immunol., Jul 1, 135, 137–46.
[140] Rodrigues, M. L., Nakayasu, E. S., Oliveira, D. L., Nimrichter, L., Nosanchuk, J. D., Almeida, I. C.,
and Casadevall, A. (2008). Extracellular vesicles produced by Cryptococcus neoformans contain
protein components associated with virulence. Eukaryot Cell., Jan, 7(1), 58–67.
[141] Zamith-Miranda, D., Nimrichter, L., Rodrigues, M. L., and Nosanchuk, J. D. (2018). Fungal
extracellular vesicles: modulating host–pathogen interactions by both the fungus and the host.
Microbes Infect., Oct, 20(9–10), 501–4.
[142] de Oliveira, H. C., Castelli, R. F., Reis, F. C. G., Rizzo, J., and Rodrigues, M. L. (2020). Pathogenic
Delivery: The Biological Roles of Cryptococcal Extracellular Vesicles. Pathog., Sep 16, 9(9), 754.
[143] Rizzo, J., Wong, S. S. W., Gazi, A. D., Moyrand, F., Chaze, T., Commere, P. H., Novault, S., Matondo,
M., Péhau-Arnaudet, G., Reis, F. C. G., Vos, M., Alves, L. R., May, R. C., Nimrichter, L., Rodrigues,
M. L., Aimanianda, V. K., and Janbon, G. (2021). Cryptococcus extracellular vesicles properties and
their use as vaccine platforms. J Extracell Vesicles., Aug 1, 10(10), e12129.
[144] Peres da Silva R., Puccia, R., Rodrigues, M. L., Oliveira, D. L., Joffe, L. S., César, G. V., Nimrichter,
L., Goldenberg, S., and Alves, L. R. (2015). Extracellular vesicle-mediated export of fungal RNA.
Sci Rep., Jul 14, 5(1), 7763.
[145] Bielska, E., Sisquella, M. A., Aldeieg, M., Birch, C., O’Donoghue, E. J., May, R. C. (2018). Pathogen
derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii.
Nat Commun., Dec 19, 9(1), 1556.
[146] Oliveira, D. L., Freire-de-Lima, C. G., Nosanchuk, J. D., Casadevall, A., Rodrigues, M. L., Nimrichter,
L. (2010). Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions.
Infect Immun., 78(4), 1601–9.
[147] Marina, C. L., Bürgel, P. H., Agostinho, D. P., Zamith-Miranda, D., Las-Casas L de O., Tavares, A.
H., Nosanchuk, J. D., and Bocca, A. L. (2020). Nutritional Conditions Modulate C. neoformans
Extracellular Vesicles’ Capacity to Elicit Host Immune Response.
Microorganisms., Nov 18, 8(11), 1815.
[148] Huang, S. H., Wu, C. H., Chang, Y. C., Kwon-Chung, K. J., Brown, R. J., and Jong, A. (2012).
Cryptococcus neoformans-Derived Microvesicles Enhance the Pathogenesis of Fungal Brain Infection.
PLoS One., 7(11).
[149] Colombo, A. C., Rella, A., Normile, T., Joffe, L. S., Tavares, P. M., Araújo, G. R. de S., Frases, S.,
Orner, E. P., Farnoud, A. M., Fries, B. C., Sheridan, B., Nimrichter, L., Rodrigues, M. L., and Del
Poeta, M. (2019). Cryptococcus neoformans Glucuronoxylomannan and Sterylglucoside Are Required
for Host Protection in an Animal Vaccination Model. MBio., Mar 1, 10(2).
[150] Minotto, R., Bernardi, C. D. V., Mallmann, L. F., Edelweiss, M. I. A., and Scroferneker, M. L. (2001).
Chromoblastomycosis: a review of 100 cases in the state of Rio Grande do Sul, Brazil.
J Am Acad Dermatol., 44(4), 585–92.
[151] Bonifaz, A., Carrasco-Gerard, E., and Saúl, A. (2001). Chromoblastomycosis: clinical and mycologic
experience of 51 cases. Mycoses., 44(1–2), 1–7.
[152] López Martínez, R., and Méndez Tovar, L. J. (2007). Chromoblastomycosis.
Clin Dermatol., Mar 1, 25(2), 188–94.
[153] Queiroz-Telles, F., Esterre, P., Perez-Blanco, M., Vitale, R., Salgado, C. G., and Bonifaz, A. (2009).
Chromoblastomycosis: an overview of clinical manifestations, diagnosis and treatment.
Med Mycol., 47(1), 3–15.
[154] De Hoog, G. S., Attili-Angelis, D., Vicente, V. A., Van Den Ende, A. H. G. G., Queiroz-Telles F.
(2004). Molecular ecology and pathogenic potential of Fonsecaea species.
Med Mycol., Oct, 42(5), 405–16.
[155] Najafzadeh, M. J., Gueidan, C., Badali, H., Van Den Ende, A. H. G., Xi L., Hoog, G. S. (2009). Genetic
diversity and species delimitation in the opportunistic genus Fonsecaea. Med Mycol.,
Feb 1, 47(1), 17–25.
[156] Najafzadeh, M. J., Rezusta, A., Cameo, M. I., Zubiri, M. L., Yus, M. C., Badali, H., Revillo, M. J., and
De Hoog, G. S. (2010). Successful treatment of chromoblastomycosis of 36 years duration caused by
Fonsecaea monophora. Med Mycol., Mar 1, 48(2), 390–3.
[157] Najafzadeh, M. J., Sun, J., Vicente, V., Xi L., Van Den Ende, A. H. G. G., and De Hoog, G. S. (2010).
Fonsecaea nubica sp. nov, a new agent of human chromoblastomycosis revealed
using molecular data. Med Mycol., Sep, 48(6), 800–6.
[158] De Azevedo, C. M. P. S., Gomes, R. R., Vicente, V. A., Santos, D. W. C. L., Marques, S. G., Do
Nascimento, M. M. F., Andrade, C. E. W., Silva, R. R., Queiroz-Telles, F., and de Hoog, G. S. (2015).
Fonsecaea pugnacius, a Novel Agent of Disseminated Chromoblastomycosis.
J Clin Microbiol., Aug 1, 53(8), 2674.
[159] Dong, B., Liu, W., Li, R., Chen, Y., Tong, Z., Zhang, X., Chen, L., and Li, D. (2020). Muriform Cells
Can Reproduce by Dividing in an Athymic Murine Model of Chromoblastomycosis due to Fonsecaea
pedrosoi. Am J Trop Med Hyg., Jun 8, 103(2), 704–12.
[160] Siqueira, I. M., de Castro, R. J. A., Leonhardt LC de M., Jerônimo, M. S., Soares, A. C., Raiol, T.,
Nishibe, C., Almeida, N., Almeida, A. H., Hoffmann, C., and Bocca, A. L. (2017). Modulation of the
immune response by Fonsecaea pedrosoi morphotypes in the course of experimental
chromoblastomycosis and their role on inflammatory response chronicity.
PLoS Negl Trop Dis., Mar 29, 11(3).
[161] Franzen, A. J., de Souza, W., Farina, M., Sales Alviano, C., and Rozental, S. (1999). Morphometric
and densitometric study of the biogenesis of electron-dense granules in Fonsecaea pedrosoi. FEMS
Microbiol Lett., Apr 1, 173(2), 395–402.
[162] Nosanchuk J. D., and Casadevall A. (2003). The contribution of melanin to microbial pathogenesis.
Cell Microbiol., Apr 1, 5(4), 203–23.
[163] Alviano, D. S., Franzen, A. J., Travassos, L. R., Holandino, C., Rozental, S., Ejzember, R., Alviano,
C. S., and Rodrigues, M. L. (2004). Melanin from Fonsecaea pedrosoi Induces Production of Human
Antifungal Antibodies and Enhances the Antimicrobial Efficacy of Phagocytes.
Infect Immun., Jan, 72(1), 229.
[164] Cunha, M. M. L., Franzen, A. J., Alviano, D. S., Zanardi, E., Alviano, C. S., De Souza, W., and
Rozental, S. (2005). Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of
Fonsecaea pedrosoi against mouse macrophages. Microsc Res Tech., 68(6), 377–84.
[165] de Medeiros Nóbrega, Y. K., Lozano, V. F., de Araújo, T. S., de Carvalho, D. D., Bocca, A. L.(2010).
The cell wall fraction from Fonsecaea pedrosoi stimulates production of different profiles of cytokines
and nitric oxide by murine peritoneal cells in vitro. Mycopathologia., 170(2), 89–98.
[166] Nimrichter, L., Barreto-Bergter, E., Mendonça-Filho, R. R., Kneipp, L. F., Mazzi, M. T., Salve, P.,
Farias, S. E., Wait, R., Alviano, C. S., and Rodrigues, M. L. (2004). A monoclonal antibody to
glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of
mouse macrophages. Microbes Infect., Jun, 6(7), 657–65.
[167] Nimrichter, L., Cerqueira, M. D., Leitão, E. A., Miranda, K., Nakayasu, E. S., Almeida, S. R., Almeida,
I. C., Alviano, C. S., Barreto-Bergter, E., and Rodrigues, M. L. (2005). Structure, Cellular Distribution,
Antigenicity, and Biological Functions of Fonsecaea pedrosoi Ceramide Monohexosides.
Infect Immun., Dec, 73(12), 7860.
[168] Las-Casas L de O. (2021). Comparative analysis between Fonsecaea sp isolates in the modulation of
the host immune response: role of vesicles and other extracellular components. University of Brasilia.
[169] Palmeira, V. F., Kneipp, L. F., Alviano, C. S., and Santos ALS Dos. (2006). The major
chromoblastomycosis fungal pathogen, Fonsecaea pedrosoi, extracellularly releases proteolytic
enzymes whose expression is modulated by culture medium composition: implications on the fungal
development and cleavage of key’s host structures. FEMS Immunol Med Microbiol., Feb, 46(1), 21–9.
[170] Collopy, Í., Kneipp, L. F., Da Silva, F. C., Rodrigues, M. L., Alviano, C. S., and Meyer-Fernandes, J.
R. (2006). Characterization of an ecto-ATPase activity in Fonsecaea pedrosoi.
Arch Microbiol., 185(5), 355–62.
[171] Palmeira, V. F., Goulart, F. R. V., Granato, M. Q., Alviano, D. S., Alviano, C. S., Kneipp, L. F., and
Santos, A. L. S. (2018). Fonsecaea pedrosoi sclerotic cells: Secretion of aspartic-type peptidase and
susceptibility to peptidase inhibitors. Front Microbiol., Jun 29, 9, 1383.
[172] Palmeira, V. F., Kneipp, L. F., Alviano, C. S., and dos Santos, A. L. S. (2010). Phospholipase and
Esterase Production by Clinical Strains of Fonsecaea pedrosoi and Their Interactions with Epithelial
Cells. Mycopathol., Mar 1, 170(1), 31–7.
[173] Alviano, C. S., Farbiarz, S. R., De Souza, W., Angluster, J., and Travassos, L. R. (1991).
Characterization of Fonsecaea pedrosoi melanin. J Gen Microbiol., 137(4), 837–44.
[174] Bocca, A. L., Brito, P. P. M. S., Figueiredo, F., and Tosta, C. E. (2006). Inhibition of nitric oxide
production by macrophages in chromoblastomycosis: a role for Fonsecaea pedrosoi melanin.
Mycopathologia., Apr, 161(4), 195–203.
[175] Cunha, M. M., Franzen, A. J., Seabra, S. H., Herbst, M. H., Vugman, N. V., Borba, L. P., de Souza,
W., and Rozental, S. (2010). Melanin in Fonsecaea pedrosoi: A trap for oxidative radicals. BMC
Microbiol. Mar 16, 10(1), 1–9.
[176] Franzen, A. J., Cunha, M. M. L., Batista, E. J. O., Seabra, S. H., De Souza, W., and Rozental, S. (2006).
Effects of tricyclazole (5-methyl-1,2,4-triazol[3,4] benzothiazole), a specific DHN-melanin inhibitor,
on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells.
Microsc Res Tech., Sep, 69(9), 729–37.
[177] Li, X. Q., Guo, B. L., Cai, W. Y., Zhang, J. M., Huang, H. Q., Zhan, P., Xi, L. Y., Vicente, V. A.,
Stielow, B., Sun, J. F., and de Hoog, G. S. (2016). The role of melanin pathways in extremotolerance
and virulence of Fonsecaea revealed by de novo assembly transcriptomics using illumina paired-end
sequencing. Stud Mycol., 83, 1–18.
[178] Nosanchuk, J. D., Stark, R. E., and Casadevall, A. (2015). Fungal melanin: What do we know about
structure? Front Microbiol., 6, 1463.
[179] Bell, A. A., and Wheeler, M. H. (1986). Biosynthesis and Functions of Fungal Melanins. Annu Rev
Phytopathol., 24(1), 411–51.
[180] Farbiarz, S. R., de Carvalho, T. U., Alviano, C., and de Souza, W. (1992). Inhibitory effect of melanin
on the interaction of Fonsecaea pedrosoi with mammalian cells in vitro.
J Med Vet Mycol., Jul 1, 30(4), 265–73.
[181] Franzen, A. J., Cunha, M. M. L., Miranda, K., Hentschel, J., Plattner, H., da Silva, M. B., Salgado, C.
G., de Souza, W., and Rozental, S. (2008). Ultrastructural characterization of melanosomes of the
human pathogenic fungus Fonsecaea pedrosoi. J Struct Biol., Apr, 162(1), 75–84.
[182] Pinto, L., Granja, L. F. Z., de Almeida, M. A., Alviano, D. S., da Silva, M. H., Ejzemberg, R., Rozental,
S., and Alviano, C. S. (2018). Melanin particles isolated from the fungus Fonsecaea pedrosoi activates
the human complement system. Mem Inst Oswaldo Cruz., Jun 25, 113(8), 1–8.
[183] Breda, L. C. D., Menezes, I. G., Paulo, L. N. M., and de Almeida, S. R. (2020). Immune Sensing and
Potential Immunotherapeutic Approaches to Control Chromoblastomycosis.
J Fungi (Basel, Switzerland)., Jan 1, 7(1), 1–20.
[184] Santos, A. L. S., Palmeira, V. F., Rozental, S., Kneipp, L. F., Nimrichter, L., Alviano, D. S., Rodrigues,
M. L., and Alviano, C. S. (2007). Biology and pathogenesis of Fonsecaea pedrosoi, the major etiologic
agent of chromoblastomycosis. FEMS Microbiol Rev., Sep 1, 31(5), 570–91.
[185] Castro RJA de, Siqueira, I. M., Jerônimo, M. S., Basso, A. M. M., Veloso Junior PH de H., Magalhães,
K. G., Leonhardt, L. C., de Oliveira, A. A. M., Bürgel, P. H., Tavares, A. H., and Bocca, A. L. (2017).
The Major Chromoblastomycosis Etiologic Agent Fonsecaea pedrosoi Activates the NLRP3
Inflammasome. Front Immunol., Nov 20, 8.
[186] Warris, A., and Ballou, E. R. (2019). Oxidative responses and fungal infection biology.
Semin Cell Dev Biol., May 1, 89, 34–46.
[187] Silva, C. L., and Fazioli, R. A. (1985). Role of the fungal cell wall in the granulomatous response of
mice to the agents of chromomycosis. J Med Microbiol., 20(3), 299–305.
[188] Yoshimi, A., Miyazawa, K., and Abe, K. (2017). Function and Biosynthesis of Cell Wall α-1,3-Glucan
in Fungi. J Fungi (Basel, Switzerland)., Dec 1, 3(4).
[189] Ruiz-Herrera, J., and Ortiz-Castellanos, L. (2019). Cell wall glucans of fungi. A review.
(Amsterdam, Netherlands). Dec 1, 5.
[190] Gomes, M. T., Lopes, A. H., and Meyer-Fernandes, J. R. (2011). Possible roles of ectophosphatases in
host-parasite interactions. J Parasitol Res., 2011.
[191] Santos, A. L. S., Souto-Padrón, T., Alviano, C. S., Lopes, A. H. C. S., Soares, R. M. A., and Meyer Fernandes, J. R. (2002). Secreted phosphatase activity induced by dimethyl sulfoxide in Herpetomonas
samuelpessoai. Arch Biochem Biophys., 405(2), 191–8.
[192] Camacho, E., and Niño-Vega, G. A. (2017). Paracoccidioides Spp.: Virulence Factors and Immune Evasion Strategies. Mediators Inflamm., 2017.
[193] Guimarães, L. H. S., Terenzi, H. F., Jorge, J. A., Leone, F. A., and Polizeli, M. L. T. M. (2003).
Extracellular alkaline phosphatase from the filamentous fungus Aspergillus caespitosus: purification
and biochemical characterization. Folia Microbiol (Praha)., 48(5), 627–32.
[194] Andrews, P. D., and Stark, M. J. R. (2000). Type 1 protein phosphatase is required for maintenance of
cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae.
J Cell Sci., Feb 1, 113(3), 507–20.
[195] Monod, M., Capoccia, S., Léchenne, B., Zaugg, C., Holdom, M., and Jousson, O. (2002). Secreted
proteases from pathogenic fungi. Int J Med Microbiol., 292(5–6), 405–19.
[196] Kneipp, L. F., Palmeira, V. F., Pinheiro, A. A. S., Alviano, C. S., Rozental, S., Travassos, L. R., and
Meyer-fernandes, J. R. (2003). Phosphatase activity on the cell wall of Fonsecaea pedrosoi.
Med Mycol., Dec, 41(6), 469–77.
[197] Kneipp, L. F., Rodrigues, M. L., Holandino, C., Esteves, F. F., Souto-Padrón, T., Alviano, C. S.,
Travassos, L. R., and Meyer-Fernandes, J. R. (2004). Ectophosphatase activity in conidial forms of
Fonsecaea pedrosoi is modulated by exogenous phosphate and influences fungal adhesion to
mammalian cells. Microbiology., Oct, 150(Pt 10), 3355–62.
[198] Alviano, D. S., Rodrigues, M. L., Almeida, C. A., Santos, A. L. S., Couceiro, J. N. S. S., Soares, R. M.
A., Travassos, L. R., and Alviano, C. S. (2004). Differential expression of sialylglycoconjugates and
sialidase activity in distinct morphological stages of Fonsecaea pedrosoi.
Arch Microbiol., Feb 6, 181(4), 278–86.
[199] Laurent-Winter, C., and Ibrahim-Granet, O. (1992). Heat-shock response in Fonsecaea pedrosoi, a
pathogenic fungus. Can J Microbiol., 38(12), 1286–91.
[200] Vicente, V. A., Weiss, V. A., Bombassaro, A., Moreno, L. F., Costa, F. F., Raittz, R. T., Leão, A. C.,
Gomes.R. R., Bocca, A. L., Fornari, G., de Castro, R. J. A., Sun, J., Faoro, H., Tadra-Sfeir, M. Z.,
Baura, V., Balsanelli, E., Almeida, S. R., Dos Santos, S. S., Teixeira, M. de M., Felipe, M. S. S., do
Nascimento, M. M. F., Pedrosa, F. O., Steffens, M. B., Attili-Angelis, D., Najafzadeh, M. J., Queiroz Telles,
F., Souza, E. M., and De Hoog, S. (2017). Comparative Genomics of Sibling Species of
Fonsecaea Associated with Human Chromoblastomycosis. Front Microbiol., Oct 9, 8, 1924.
[201] Bombassaro, A., Schneider, G. X., Costa, F. F., Leão, A. C. R., Soley, B. S., Medeiros, F., da Silva, N.
M., Lima, B. J. F. S., Castro, R. J. A., Bocca, A. L., Baura, V. A., Balsanelli, Pankievicz, V. C. S., E.,
Hrysay, N. M. C., Scola, R. H., Moreno, L. F., Azevedo, C. M. P. S., Souza, E. M., Gomes, R. R., de
Hoog, S., and Vicente, V. A. (2020). Genomics and Virulence of Fonsecaea pugnacius, Agent of
Disseminated Chromoblastomycosis. Front Genet., Aug 4, 11, 822.
[202] Okeke, C. N., and Gugnani, H. C. (1989). Lipases of Fonsecaea pedrosoi and Phialophora verrucosa.
Antonie Van Leeuwenhoek., Apr, 55(4), 313–24.
[203] De Souza, T. F., Scroferneker, M. L., Da Costa, J. M., Carissimi, M., Corbellini, V. A. (2008). Secretion
of five extracellular enzymes by strains of chromoblastomycosis agents.
Rev Inst Med Trop Sao Paulo., Sep, 50(5), 269–72.
[204] Montoya, A. M., Montesino, C. A., Carrión-Álvarez, D., González, G. M., Rojas, O. C. (2020). A
comparative study of extracellular enzymes from chromoblastomycosis agents reveals the potential
association of phospholipase with the severity of the lesions. Microb Pathog., Oct 1, 147.
[205] Palmeira, V. F., Kneipp, L. F., Alviano, C. S., and dos Santos, A. L. S. (2006). Secretory aspartyl
peptidase activity from mycelia of the human fungal pathogen Fonsecaea pedrosoi: effect of HIV
aspartyl proteolytic inhibitors. Res Microbiol., Nov, 157(9), 819–26.
[206] Teixeira, M. M., Moreno, L. F., Stielow, B. J., Muszewska, A., Hainaut, M., Gonzaga, L., Abouelleil,
A., Patané, J. S. L., Priest, M., Souza, R., Young, S., Ferreira, K. S., Zeng, Q., da Cunha, M. M. L.,
Gladki, A., Barker, B., Vicente, V. A., de Souza, E. M., Almeida, S., Henrissat, B., Vasconcelos, A. T.
R., Deng, S., Voglmayr, H., Moussa, T. A. A., Gorbushina, A., Felipe, M. S. S., Cuomo, C. A., and de
Hoog, G. S. (2017). Exploring the genomic diversity of black yeasts and relatives
(Chaetothyriales, Ascomycota). Stud Mycol., Mar 1, 86, 1–28.
[207] Alviano, C. S., Farbiarz, S. R., Travassos, L. R., Angluster, J., and de Souza, W. (1992). Effect of
environmental factors on Fonsecaea pedrosoi morphogenesis with emphasis on sclerotic cells induced
by propranolol. Mycopathologia., Jul, 119(1), 17–23.
[208] Santos, A. L. S., Braga-Silva, L. A., Gonçalves, D. S., Ramos, L. S., Oliveira, S. S. C., Souza, L. O. P.,
Oliveira, V. S., Lins, R. D., Pinto, M. R., Muñoz, J. E., Taborda, C. P., and Branquinha, M. H.
Repositioning Lopinavir, an HIV Protease Inhibitor, as a Promising Antifungal Drug: Lessons Learned
from Candida albicans-In Silico, In Vitro and In Vivo Approaches. J fungi
(Basel, Switzerland)., Jun 1, 7(6).
[209] Blacketer, M. J., Koehler, C. M., Coats, S. G., Myers, A. M., and Madaule, P. (1993). Regulation of
dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p
and protein phosphatase 2A. Mol Cell Biol., Sep, 13(9), 5567–81.
[210] Freitas-Mesquita, A. L., and Meyer-Fernandes, J. R. (2014). Biochemical properties and possible roles
of ectophosphatase activities in fungi. Int J Mol Sci., Feb 6, 15(2), 2289–304.
[211] Tsatsaronis, J. A., Franch-Arroyo, S., Resch, U., and Charpentier, E. (2018). Extracellular Vesicle
RNA: A Universal Mediator of Microbial Communication? Trends Microbiol., May 1, 26(5), 401–10.
[212] Rizzo, J., Chaze, T., Miranda, K., Roberson, R. W., Gorgette, O., Nimrichter, L., Matondo, M., Latgé,
J-P., Beauvais, A., and Rodrigues, M. L. (2020). Characterization of Extracellular Vesicles Produced
by Aspergillus fumigatus Protoplasts. mSphere., Aug 26, 5(4).
[213] Cunha, D., Amaro, C., Vieira, M. R., Martins, M da L., Maduro, A. P., Inácio, J., Afonso, A., Pinto, G.
M., and Cardoso, J. (2012). Phaeohyphomycosis caused by Alternaria infectoria presenting as multiple
vegetating lesions in a renal transplant patient. Rev Iberoam Micol., Jan, 29(1), 44–6.
[214] Silva, B. M. A., Prados-Rosales, R., Espadas-Moreno, J., Wolf, J. M., Luque-Garcia, J. L., Gonçalves
T., and Casadevall, A. (2014). Characterization of Alternaria infectoria extracellular vesicles.
Med Mycol., Feb 1, 52(2), 202.
[215] Liu, M., Bruni, G. O., Taylor, C. M., Zhang, Z., and Wang, P. (2018). Comparative genome-wide
analysis of extracellular small RNAs from the mucormycosis pathogen Rhizopus delemar.
Sci Rep., Mar 27, 8(1), 1–10.
[216] Souza, J. A. M., Baltazar, L de M., Carregal, V. M., Gouveia-Eufrasio, L., de Oliveira, A. G., Dias, W.
G., Rocha, M. C., de Miranda, K. R., Malavazi, I., Santos, D. de A. S., Frézard, F. J. G., de Souza, A.
de G., Teixeira, M. M., and Soriani, F. M. (2019). Characterization of Aspergillus fumigatus
Extracellular Vesicles and Their Effects on Macrophages and Neutrophils Functions.
Front Microbiol., Sep 4, 10, 2008.
[217] Brauer, V. S., Pessoni, A. M., Bitencourt, T. A., de Paula, R. G., de Oliveira Rocha, L., Goldman, G.
H., and Almeida, F. (2020). Extracellular Vesicles from Aspergillus flavus Induce M1 Polarization In
Vitro. mSphere., Jun 24, 5(3).
[218] Brown, G. D. (2011). Innate Antifungal Immunity: The Key Role of Phagocytes.
Annu Rev Immunol., 29, 1–21.
[219] Filler, S. G., Yeaman, M. R., and Sheppard, D. C. (2005). Tumor necrosis factor inhibition and invasive
fungal infections. Clin Infect Dis., Aug 1, 41 Suppl 3.
[220] Netea, M. G., Simon, A., Van De Veerdonk, F., Kullberg, B. J., Van Der Meer, J. W. M., and Joosten,
L. A. B. (2010). IL-1β Processing in Host Defense: Beyond the Inflammasomes.
PLoS Pathog., Feb, 6(2), 1000661.
[221] Siqueira, I. M., Wüthrich, M., Li M., Wang, H., Las-Casas L de O., de Castro, R. J. A., Klein, B., and
Bocca, A. L. (2020). Early immune response against Fonsecaea pedrosoi requires Dectin-2-mediated
Th17 activity, whereas Th1 response, aided by Treg cells, is crucial for fungal clearance in later stage
of experimental chromoblastomycosis. PLoS Negl Trop Dis., Jun 1, 14(6), e0008386.
[222] Karki, R., Man, S. M., Malireddi, R. K. S., Gurung, P., Vogel, P., Lamkanfi, M., and Kanneganti, T D.
(2015). Concerted Activation of the AIM2 and NLRP3 Inflammasomes Orchestrates Host
Protection against Aspergillus Infection. Cell Host Microbe., 1–12.
[223] Marques, S. G., Silva, C. D. M. P., Saldanha, P. C., Rezende, M. A., Vicente, V. A., Queiroz-Telles,
F., and Costa, J. M. L. (2006). Isolation of Fonsecaea pedrosoi from the shell of the babassu coconut
(Orbignya phalerata Martius) in the Amazon region of Maranhão Brazil.
Nihon Ishinkin Gakkai Zasshi., 47(4), 305–11.
[224] Queiroz-Telles, F., de Hoog, S., Santos, D. W. C. L., Salgado, C. G., Vicente, V. A., Bonifaz, A.,
Roilides, E., Xi, L., Silva Azevedo, C. de M. P. E., da Silva, M. B., Pana, Z. D., Colombo, A. P., and
Walsh, T. J. (2017). Chromoblastomycosis. Clin Microbiol Rev., Jan 1, 30(1), 233–76.
[225] Salgado, C. G., Da Silva, J. P., Diniz, J. A. P,. Da Silva, M. B., Da Costa, P. F., Teixeira, C., and
Salgado, U. I. (2004). Isolation of Fonsecaea pedrosoi from thorns of Mimosa pudica, a probable
natural source of chromoblastomycosis. Rev Inst Med Trop Sao Paulo., 46(1), 33–6.
[226] Cleare, L. G., Zamith, D., Heyman, H. M., Couvillion, S. P., Nimrichter, L., Rodrigues, M. L.,
Nakayasu, E. S., and Nosanchuk, J. D. (2020). Media matters! Alterations in the loading and release of
Histoplasma capsulatum extracellular vesicles in response to different nutritional milieus. Cell
Microbiol., Sep 1, 22(9).


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!