Chapter 10. Characteristics of a Sectional Electroelastic Actuator for Nanomechatronics

$39.50

S. M. Afonin
National Research University of Electronic Technology, MIET, Moscow, Russia

Part of the book: Advances in Engineering Research. Volume 52
Chapter DOI: https://doi.org/10.52305/HMGJ8261

Abstract

The coded control is determined for a sectional electroelastic actuator for the nanomechatronics systems. Sectional electroelastic actuators on piezoelectric or electrostriction effects are used in nanomechatronics. nanotechnology, nanobiomedicine, adaptive optics and astronomy. The expressions of the characteristics of a sectional electroelastic actuator are considered by using the equations of electroelasticity and the ordinary linear differential equation second order of an engine. The transient characteristic of a sectional electroelastic actuator is received for nanomechatronics. The mechanical and regulation characteristics of a sectional piezo actuator with the coded control are obtained. The static and dynamic characteristics of the sectional piezo actuator with the coded control are investigated. The characteristics of the sectional piezo actuator for the nanomechatronics systems are received with using the rigidity and the mass of the load. The equations for the displacements of the sectional piezo actuator for the longitudinal, transverse and shear piezo effects are obtained. The transfer functions of this sectional piezo actuator are determined at elastic-inertial load.

Keywords: characteristic, sectional electroelastic actuator, sectional piezo actuator, piezo effect, nanomechatronics


References

Schultz, J., Ueda, J., Asada, H., Cellular Actuators. Butterworth-Heinemann Publisher: Oxford, 2017, 382 p.
Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices; Mason, W., Ed., Academic Press: New York, 1964, pp. 515 p.
Bhushan, B., Springer Handbook of Nanotechnology. Springer: Berlin, New York, 2004, 1222 p.
Uchino, K., Piezoelectric Actuator and Ultrasonic Motors. Kluwer Academic Publisher: Boston, MA, 1997, 350 p.
Ueda, J., Secord, T., Asada, H.H., Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME Transactions on Mechatronics 2010, 15(5), 770-782.
Sherrit, S., Jones, C., Aldrich, J., Blodget, C., Bao, X., Badescu, M., Bar-Cohen, Y., Multilayer piezoelectric stack actuator characterization. Proceedings of SPIE – The International Society for Optical Engineering 2008, 6929, 776396.
Uchino, K. Multilayer technologies for piezoceramic materials. In: Advanced Piezoelectric Materials: Science and Technology. Uchino, K., Ed., Woodhead Publishing in Materials, Elsevier: United Kingdom, 2017, 423-451.
Afonin, S. M., Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics 2006, 74(3), 943-948.
Afonin, S. M., Static and dynamic characteristics of a multi-layer electroelastic solid. Mechanics of Solids 2009, 44(6), 935-950.
Afonin, S. M., Static and dynamic characteristics of multilayered electromagnetoelastic transducer of nano- and micrometric movements. Journal of Computer and Systems Sciences International 2010, 49(1), 73-85.
Zwillinger, D., Handbook of Differential Equations. Academic Press: Boston, 1989, 673 p.
Afonin, S. M. In: Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Parinov, I. A., Ed., Nova Science Publisher: New York, 2015, 225-242.
Afonin, S. M., A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. In: Advances in Nanotechnology. Vol. 19. Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2017, 259-284.
Afonin, S. M., A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology, In: Advances in Nanotechnology. Vol. 22. Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2019, 169-186.
Afonin, S. M., Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology, In: Advances in Nanotechnology. Vol. 25. Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2021, 251-266.
Afonin, S. M., Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics 73(2), 307-313.
Afonin, S.M. Absolute stability of a piezotransducer deformation control system. Journal of Computer and Systems Sciences International 2005, vol. 44(2), 266-272.
Afonin, S. M., A generalized structural-parametric model of an electromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation of parametric structural circuits of an electromagnetoelastic converter for nano- and micrometric movement control systems. Journal of Computer and Systems Sciences International 2006, 45(2), 317-325.
Afonin, S. M., Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady Physics 2008, 53(3), 137-143.
Afonin, S. M., Dynamic characteristics of multilayer piezoelectric nano- and micromotors. Russian Engineering Research 2015, 35(2), 89-93.
Afonin, S. M., Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators 2018, 7(1), 1-9.
Afonin, S. M., Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators 2019, 8(3), 1-14.
Afonin, S.M. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation 2020, 3(4), 1-7.
Afonin, S.M. Coded control of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation 2021, vol. 4(3), 1-11.
Afonin, S. M., Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics 2017, 5(1), 9-15.
Afonin, S. M., Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics 2019, 7(2), 50-57.
Afonin, S. M. Electroelastic actuator for nanomechanics. Russian Engineering Research 2020, 40(11), 893-900.
Afonin, S. M., A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications 2018, 6(3), 1-9.
Afonin, S. M., Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems, Transactions on networks and communications 2019, 7(3), 11-21.
Afonin S.M. An Absolute Stability of Nanomechatronics System with Electroelastic Actuator, In: Advances in Nanotechnology. Vol. 27. Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2022, pp. 183-198.
Afonin, S. M., Characteristics of nanopositioning electroelastic digital-to-analog converter for communication systems. Transactions on Networks and Communications 2020, 8(6), 35–44.
Afonin, S. M., A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transactions on Machine Learning and Artificial Intelligence 2020, 8(4), 23-33.
Afonin, S. M., Structural-parametric model of a piezoactuator for nanoscience and nanotechnology. European Journal of Applied Sciences 2021, 9(3), 26-36.
Afonin S. M., Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Engineering Research 2021, 41(4), 285-288.
Nalwa, H. S., Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers: Los Angeles, 2004, 10 Volumes.

 

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!