Chapter 1. Solid Lipid Nanoparticles as Innovative Strategies for the Treatment and Prophylaxis of Infectious Diseases


C. Rodríguez Laboccetta¹,², A. Videla Garrido², V. Briceño Fernández¹,², M. A. Toscanini¹,², A. D. Nusblat¹ and M. L. Cuestas²
¹Universidad de Buenos Aires, CONICET, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
²Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina

Part of the book: Infectious Diseases: From Prevention to Control


Despite the advances in the understanding of the pathogenesis of infectious diseases and the development of novel treatments and vaccines to control and prevent them, these pathogenic disorders are among the most common causes of hospitalization and death worldwide. Nanotechnology has recently emerged as a promising tool in biomedicine research. An important branch of nanotechnology is drug delivery and drug targeting using a wide range of biomaterials with auspicious potential applications in numerous infectious diseases. Solid lipid nanoparticles (SLNs) have emerged as carriers for therapeutic drugs, peptides, proteins, antigens and bioactive molecules, as well as for vaccine delivery. They are made up of a solid matrix that allows the controlled release of the drug or other molecules accommodated between fatty acid chains. A review of the nanomaterials used for the preparation of SLNs will be summarized. The current state-of-the art on several SLN formulations as nanocarriers of FDA-approved drugs for the therapy and prophylaxis of various infectious diseases, including those considered neglected by the World Health Organization that are under preclinical or clinical trials, will be addressed in this chapter.

Keywords: infectious diseases, neglected tropical diseases, solid lipid nanoparticles, sustained drug release, targeted drug delivery, biomaterials, vaccines


[1] WHO, The top 10 causes of death. sheets/detail/the-top-10-causes-of-death (accessed 4 October 2022).
[2] Basak S, Singh P, Rajurkar M. Multidrug Resistant and Extensively Drug Resistant
Bacteria: A Study. J Pathog. 2016; 2016:4065603. doi: 10.1155/2016/4065603.
[3] WHO, Antimicrobial resistance: global report on surveillance 2014.
(accessed 9 September 2022).
[4] The Interagency Coordination Group on Antimicrobial Resistance (IACG). 2019.
No time to wait: Securing the future from drug-resistant infections. Report to the
Secretary-General of the United Nations. source/documents/no-time-to-waitsecuring-the-future-from-drug-resistant-infe
ctions-en.pdf?sfvrsn=5b424d7_6 (accessed 13 August 2021).
[5] Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century–a clinical
super-challenge. N Engl J Med. 2009;360(5):439-43. doi: 10.1056/NEJMp0804651.
[6] Sharma A. Antimicrobial resistance: no action today, no cure tomorrow. Indian J
Med Microbiol. 2011;29(2):91-2. doi: 10.4103/0255-0857.81774.
[7] Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development,
dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold
Spring Harb Perspect Med. 2013;3(4):a010306. doi: 10.1101/cshperspect.a010306.
[8] Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK. Bacterial
adherence and biofilm formation on medical implants: a review. Proc Inst Mech
Eng H. 2014;228(10):1083-99. doi: 10.1177/0954411914556137.
[9] Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl.
2013;136:1-51. doi: 10.1111/apm.12099.
[10] Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M,
Rafiq M, Kamil MA. Bacterial biofilm and associated infections. J Chin Med
Assoc. 2018;81(1):7-11. doi: 10.1016/j.jcma.2017.07.012.
[11] Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug
Discov. 2003;2(2):114-22. doi: 10.1038/nrd1008.
[12] Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of
bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322-32. doi: 10.1016/
[13] Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block
copolymer micelles as drug delivery agents: improved hydrosolubility, stability and
bioavailability of drugs. Eur J Pharm Biopharm. 2007;66(3):303-17. doi: 10.10
[14] Limeres MJ, Moretton MA, Bernabeu E, Chiappetta DA, Cuestas ML. Thinking
small, doing big: Current success and future trends in drug delivery systems for
improving cancer therapy with special focus on liver cancer. Mater Sci Eng C
Mater Biol Appl. 2019;95:328-341. doi: 10.1016/j.msec.2018.11.001.
[15] Chiappetta DA, Degrossi J, Teves S, D’Aquino M, Bregni C, Sosnik A. Triclosan loaded poloxamine micelles for enhanced topical antibacterial activity against
biofilm. Eur J Pharm Biopharm. 2008;69(2):535-45. doi: 10.1016/j.ejpb.2007.
[16] Seremeta KP, Chiappetta DA, Sosnik A. Poly(ε-caprolactone), Eudragit® RS 100
and poly(ε-caprolactone)/Eudragit® RS 100 blend submicron particles for the
sustained release of the antiretroviral efavirenz. Colloids Surf B Biointerfaces.
2013;102:441-9. doi: 10.1016/j.colsurfb.2012.06.038.
[17] Moretton MA, Chiappetta DA, Andrade F, das Neves J, Ferreira D, Sarmento B,
Sosnik A. Hydrolyzed galactomannan-modified nanoparticles and flower-like
polymeric micelles for the active targeting of rifampicin to macrophages. J Biomed
Nanotechnol. 2013;9(6):1076-87. doi: 10.1166/jbn.2013.1600.
[18] Salerno C, Chiappetta DA, Arechavala A, Gorzalczany S, Scioscia SL, Bregni C.
Lipid-based microtubes for topical delivery of amphotericin B. Colloids Surf B
Biointerfaces. 2013;107:160-6. doi: 10.1016/j.colsurfb.2013.02.001.
[19] Chiappetta DA, Hocht C, Opezzo JA, Sosnik A. Intranasal administration of
antiretroviral-loaded micelles for anatomical targeting to the brain in HIV.
Nanomedicine (Lond). 2013 Feb;8(2):223-37. doi: 10.2217/nnm.12.104.
[20] Moretton MA, Taira C, Flor S, Bernabeu E, Lucangioli S, Höcht C, Chiappetta DA.
Novel nelfinavir mesylate loaded d-α-tocopheryl polyethylene glycol 1000
succinate micelles for enhanced pediatric anti-HIV therapy: In vitro
characterization and in vivo evaluation. Colloids Surf B Biointerfaces. 2014;123:
302-10. doi: 10.1016/j.colsurfb.2014.09.031.
[21] Moretton MA, Cohen L, Lepera L, Bernabeu E, Taira C, Höcht C, Chiappetta DA.
Enhanced oral bioavailability of nevirapine within micellar nanocarriers compared
with Viramune(®). Colloids Surf B Biointerfaces. 2014;122:56-65. doi: 10.1016/
[22] Tshweu L, Katata L, Kalombo L, Chiappetta DA, Hocht C, Sosnik A, Swai H.
Enhanced oral bioavailability of the antiretroviral efavirenz encapsulated in
poly(epsilon-caprolactone) nanoparticles by a spray-drying method. Nanomedicine
(Lond). 2014;9(12):1821-33. doi: 10.2217/nnm.13.167.
[23] Moretton MA, Cagel M, Bernabeu E, Gonzalez L, Chiappetta DA.
Nanopolymersomes as potential carriers for rifampicin pulmonary delivery.
Colloids Surf B Biointerfaces. 2015;136:1017-25. doi: 10.1016/j.colsurfb.2015.1
[24] Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A.
Nanoparticles and Vaccine Development. Pharm Nanotechnol. 2020;8(1):6-21.
doi: 10.2174/2211738507666191024162042.
[25] Cuestas ML, Castillo AI, Sosnik A, Mathet VL. Downregulation of mdr1 and abcg2
genes is a mechanism of inhibition of efflux pumps mediated by polymeric
amphiphiles. Bioorg Med Chem Lett. 2012;22(21):6577-9. doi: 10.1016/j.bmcl.
[26] Zhou Y, Zhang K, Yin X, Nie Q, Ma Y. HIV-1 Tat Protein Enhances Expression
and Function of Breast Cancer Resistance Protein. AIDS Res Hum Retroviruses.
2016;32(1):1-3. doi: 10.1089/aid.2015.0117.
[27] Roma MI, Hocht C, Chiappetta DA, Di Gennaro SS, Minoia JM, Bramuglia GF,
Rubio MC, Sosnik A, Peroni RN. Tetronic® 904-containing polymeric micelles
overcome the overexpression of ABCG2 in the blood-brain barrier of rats and boost
the penetration of the antiretroviral efavirenz into the CNS. Nanomedicine (Lond).
2015;10(15):2325-37. doi: 10.2217/NNM.15.77.
[28] Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat
microbial resistance. Adv Drug Deliv Rev. 2013;65(13-14):1803-15. doi: 10.10
[29] Baek JS, Cho CW. Surface modification of solid lipid nanoparticles for oral
delivery of curcumin: Improvement of bioavailability through enhanced cellular
uptake, and lymphatic uptake. Eur J Pharm Biopharm. 2017;117:132-140. doi:
[30] Martins S, Costa-Lima S, Carneiro T, Cordeiro-da-Silva A, Souto EB, Ferreira DC.
Solid lipid nanoparticles as intracellular drug transporters: an investigation of the
uptake mechanism and pathway. Int J Pharm. 2012;430(1-2):216-27. doi:
[31] Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JE, Omidfar
K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids. 2014;181:56-
61. doi: 10.1016/j.chemphyslip.2014.03.006.
[32] Karamanou M, Panayiotakopoulos G, Tsoucalas G, Kousoulis AA, Androutsos G.
From miasmas to germs: a historical approach to theories of infectious disease
transmission. Infez Med. 2012;20(1):58-62.
[33] WHO. Coronavirus disease (COVID-19) pandemic.
ncies/diseases/novel-coronavirus-2019 (accessed 4 October 2022).
[34] Lane N. The unseen world: reflections on Leeuwenhoek (1677) ‘Concerning little
animals’. Philos Trans R Soc Lond B Biol Sci. 2015;370(1666):20140344. doi:
[35] Maloy S, Schaechter M. The era of microbiology: a golden phoenix. Int Microbiol.
[36] Standing up to infectious disease. Nat Microbiol. 4(1) (2019).
[37] Hay SI, Battle KE, Pigott DM, Smith DL, Moyes CL, Bhatt S, Brownstein JS,
Collier N, Myers MF, George DB, Gething PW. Global mapping of infectious
disease. Philos Trans R Soc Lond B Biol Sci. 2013;368(1614):20120250. doi:
[38] WHO, Control of Neglected Tropical Diseases.
iseases/diseases/en/ (accessed 9 December 2019).
[39] Molyneux D. Neglected tropical diseases. Community Eye Health. 2013;26(82):21-
[40] Cuestas ML. Therapy of Chronic Hepatitis C in the Era of Nanotechnology: Drug
Delivery Systems and Liver Targeting. Mini Rev Med Chem. 2017;17(3):295-304.
doi: 10.2174/1389557516666161019152716.
[41] Feynman R.P. There’s plenty of room at the bottom. Eng and Sci 23(5) (1960). 22-
[42] Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA. Paclitaxel:
What has been done and the challenges remain ahead. Int J Pharm. 2017;526(1-
2):474-495. doi: 10.1016/j.ijpharm.2017.05.016.
[43] Schütz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M; NanoImpactNet
Consortium. Therapeutic nanoparticles in clinics and under clinical evaluation.
Nanomedicine (Lond). 2013;8(3):449-67. doi: 10.2217/nnm.13.8.
[44] Ge Y, Li S, Wang S, Moore R. Nanomedicine. Principles and Perspectives,
Springer, Otawa, 2014.
[45] Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress.
Nat Rev Cancer. 2008;8(6):473-80. doi: 10.1038/nrc2394.
[46] Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA. Doxorubicin:
nanotechnological overviews from bench to bedside. Drug Discov Today.
2017;22(2):270-281. doi: 10.1016/j.drudis.2016.11.005.
[47] Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B.
Nanotechnology and pulmonary delivery to overcome resistance in infectious
diseases. Adv Drug Deliv Rev. 2013;65(13-14):1816-27. doi: 10.1016/j.addr.2013.
[48] Ruge CA, Schaefer UF, Herrmann J, Kirch J, Cañadas O, Echaide M, Pérez-Gil J,
Casals C, Müller R, Lehr CM. The interplay of lung surfactant proteins and lipids
assimilates the macrophage clearance of nanoparticles. PLoS One. 2012;
7(7):e40775. doi: 10.1371/journal.pone.0040775.
[49] Velasco-Aguirre C, Morales-Zavala F, Salas-Huenuleo E, Gallardo-Toledo E,
Andonie O, Muñoz L, Rojas X, Acosta G, Sánchez-Navarro M, Giralt E, Araya E,
Albericio F, Kogan MJ. Improving gold nanorod delivery to the central nervous
system by conjugation to the shuttle Angiopep-2. Nanomedicine (Lond).
2017;12(20):2503-2517. doi: 10.2217/nnm-2017-0181.
[50] Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: role of
physicochemical properties of particulate carriers–liposomes and microspheres–
on the phagocytosis by macrophages. J Control Release. 2002;79(1-3):29-40. doi:
[51] Halwani AA. Development of Pharmaceutical Nanomedicines: From the Bench to
the Market. Pharmaceutics. 2022;14(1):106. doi: 10.3390/pharmaceutics1401010
[52] Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid
nanoparticles and nanostructured lipid carriers for targeting brain diseases. J
Control Release. 2017;264:306-332. doi: 10.1016/j.jconrel.2017.08.033.
[53] Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM.
Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems.
Pharmaceutics. 2018;10(4):191. doi: 10.3390/pharmaceutics10040191.
[54] Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation
approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349-58. doi:
[55] Naseri N, Valizadeh H, Zakeri-Milani P. Solid Lipid Nanoparticles and
Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv Pharm
Bull. 2015;5(3):305-13. doi: 10.15171/apb.2015.043.
[56] Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved
microencapsulation of drugs. Int J Pharm. 2002;242(1-2):121-8. doi: 10.1016/s03
[57] Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid
lipid nanoparticles (SLNs): development, characterizations and comparative
evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci.
2012;47(1):139-51. doi: 10.1016/j.ejps.2012.05.010.
[58] Li F, Wang Y, Liu Z, Lin X, He H, Tang X. Formulation and characterization of
bufadienolides-loaded nanostructured lipid carriers. Drug Dev Ind Pharm.
2010;36(5):508-17. doi: 10.3109/03639040903264397.
[59] CDC, Fungal Diseases.
(accessed 16 December 2019).
[60] Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden
killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13. doi:
[61] Ramana KV, Kandi S, Bharatkumar P, Sharada CHV, Rao R, Mani R, Rao SD.
Invasive fungal infections: a comprehensive review. Am J Infect Dis Microbiol 1
(2013) 64-69.
[62] Goughenour KD, Rappleye CA. Antifungal therapeutics for dimorphic fungal
pathogens. Virulence. 2017;8(2):211-221. doi: 10.1080/21505594.2016.1235653.
[63] Souza AC, Amaral AC. Antifungal Therapy for Systemic Mycosis and the
Nanobiotechnology Era: Improving Efficacy, Biodistribution and Toxicity. Front
Microbiol. 2017;8:336. doi: 10.3389/fmicb.2017.00336.
[64] Pappas PG. Antifungal clinical trials and guidelines: what we know and do not
know. Cold Spring Harb Perspect Med. 2014;4(11):a019745. doi: 10.1101/
[65] Proffitt RT, Satorius A, Chiang SM, Sullivan L, Adler-Moore JP. Pharmacology
and toxicology of a liposomal formulation of amphotericin B (AmBisome) in
rodents. J Antimicrob Chemother. 1991;28 Suppl B:49-61. doi: 10.1093/jac/28.
[66] Clark JM, Whitney RR, Olsen SJ, George RJ, Swerdel MR, Kunselman L, Bonner
DP. Amphotericin B lipid complex therapy of experimental fungal infections in
mice. Antimicrob Agents Chemother. 1991;35(4):615-21. doi: 10.1128/AAC.35.4.
[67] Guo LSS, Fielding RM, Lasic DD, Hamilton RL, Mufson D. Novel antifungal drug
delivery: stable amphotericin B-cholesteryl sulfate discs. Int J Pharm. 1991; 75:45–
54. doi: 10.1016/0378-5173(91)90249-N.
[68] Nett JE, Andes DR. Antifungal agents: Spectrum of activity, pharmacology, and
clinical indications. Infect Dis Clin North Am. 2016; 30(1):51–83. doi: 10.1016/
[69] Hargrove TY, Garvey EP, Hoekstra WJ, Yates CM, Wawrzak Z, Rachakonda G,
Villalta F, Lepesheva GI. Crystal structure of the new investigational drug
candidate VT-1598 in complex with Aspergillus fumigatus sterol 14α-demethylase
provides insights into its broad-spectrum antifungal activity. Antimicrob Agents
Chemother. 2017;61(7):e00570-17. doi: 10.1128/AAC.00570-17.
[70] Peyton LR, Gallagher S, Hashemzadeh M. Triazole antifungals: a review. Drugs
Today (Barc). 2015;51(12):705-18. doi: 10.1358/dot.2015.51.12.2421058.
[71] Sucher AJ, Chahine EB, Balcer HE. Echinocandins: the newest class of antifungals.
Ann Pharmacother. 2009;43(10):1647-57. doi: 10.1345/aph.1M237.
[72] Polvi EJ, Li X, O’Meara TR, Leach MD, Cowen LE. Opportunistic yeast pathogens:
reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol Life Sci.
2015;72(12):2261-87. doi: 10.1007/s00018-015-1860-z.
[73] Resendiz Sharpe A, Lagrou K, Meis JF, Chowdhary A, Lockhart SR, Verweij PE;
ISHAM/ECMM Aspergillus Resistance Surveillance working group. Triazole
resistance surveillance in Aspergillus fumigatus. Med Mycol. 2018;56(suppl_1):83-
92. doi: 10.1093/mmy/myx144.
[74] Bianco, MA, Gallarate, M, Trotta, M, & Battaglia, L. Amphotericin B loaded SLN
prepared with the coacervation technique. J. Drug Del. Sci. Tech. 2010; 20(3): 187–
[75] Patel PA, Patravale VB. AmbiOnp: solid lipid nanoparticles of amphotericin B for
oral administration. J Biomed Nanotechnol. 2011;7(5):632-9. doi: 10.1166/jbn.20
[76] Chaudhari MB, Desai PP, Patel PA, Patravale VB. Solid lipid nanoparticles of
amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and
effective oral treatment module. Drug Deliv Transl Res. 2016;6(4):354-64. doi:
[77] Aljaeid BM, Hosny KM. Miconazole-loaded solid lipid nanoparticles: formulation
and evaluation of a novel formula with high bioavailability and antifungal activity.
Int J Nanomedicine. 2016;11:441-7. doi: 10.2147/IJN.S100625.
[78] Araujo VHS, Delello Di Filippo L, Duarte JL, Spósito L, Camargo BAF, da Silva
PB, Chorilli M. Exploiting solid lipid nanoparticles and nanostructured lipid
carriers for drug delivery against cutaneous fungal infections. Crit Rev Microbiol.
2021;47(1):79-90. doi: 10.1080/1040841X.2020.1843399.
[79] Butani D, Yewale C, Misra A. Topical Amphotericin B solid lipid nanoparticles:
Design and development. Colloids Surf B Biointerfaces. 2016;139:17-24. doi:
[80] Moazeni M, Kelidari HR, Saeedi M, Morteza-Semnani K, Nabili M, Gohar AA,
Akbari J, Lotfali E, Nokhodchi A. Time to overcome fluconazole resistant Candida
isolates: Solid lipid nanoparticles as a novel antifungal drug delivery system.
Colloids Surf B Biointerfaces. 2016;142:400-407. doi: 10.1016/j.colsurfb.2016.03.
[81] Gupta M, Vyas SP. Development, characterization and in vivo assessment of
effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous
candidiasis. Chem Phys Lipids. 2012;165(4):454-61. doi: 10.1016/j.chemphyslip.
[82] Gupta M, Tiwari S, Vyas SP. Influence of various lipid core on characteristics of
SLNs designed for topical delivery of fluconazole against cutaneous candidiasis.
Pharm Dev Technol. 2013;18(3):550-9. doi: 10.3109/10837450.2011.598161.
[83] El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER,
El-Nabarawi MA. Fluconazole-loaded solid lipid nanoparticles topical gel for
treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv.
2018;25(1):78-90. doi: 10.1080/10717544.2017.1413444.
[84] Mirza MA, Panda AK, Asif S, Verma D, Talegaonkar S, Manzoor N, Khan A,
Ahmed FJ, Dudeja M, Iqbal Z. A vaginal drug delivery model. Drug Deliv.
2016;23(8):3123-3134. doi: 10.3109/10717544.2016.1153749.
[85] Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and
evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical
delivery. AAPS Pharm Sci Tech. 2009;10(1):289-96. doi: 10.1208/s12249-009-
[86] Jain S, Jain S, Khare P, Gulbake A, Bansal D, Jain SK. Design and development of
solid lipid nanoparticles for topical delivery of an anti-fungal agent. Drug Deliv.
2010;17(6):443-51. doi: 10.3109/10717544.2010.483252.
[87] Ramasamy, T, Khandasami, US, Ruttala, H, Shanmugam, S. et al. Development of
solid lipid nanoparticles enriched hydrogels for topical delivery of anti-fungal
agent. Macromol. Res. 2012; 20:682–92. doi: 10.1007/s13233-012-0107-1.
[88] Cassano R, Ferrarelli T, Mauro MV, Cavalcanti P, Picci N, Trombino S.
Preparation, characterization and in vitro activities evaluation of solid lipid
nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug
Deliv. 2016;23(3):1047-56. doi: 10.3109/10717544.2014.932862.
[89] Souto EB, Müller RH. SLN and NLC for topical delivery of ketoconazole. J
Microencapsul. 2005;22(5):501-10. doi: 10.1080/02652040500162436.
[90] Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled
release formulation based on SLN and NLC for topical clotrimazole delivery. Int J
Pharm. 2004;278(1):71-7. doi: 10.1016/j.ijpharm.2004.02.032.
[91] Das S, Ng WK, Tan RB. Sucrose ester stabilized solid lipid nanoparticles and
nanostructured lipid carriers. I. Effect of formulation variables on the
physicochemical properties, drug release and stability of clotrimazole-loaded
nanoparticles. Nanotechnology. 2014;25(10):105101. doi: 10.1088/0957-4484/25/
[92] Sanna V, Gavini E, Cossu M, Rassu G, Giunchedi P. Solid lipid nanoparticles
(SLN) as carriers for the topical delivery of econazole nitrate: in-vitro
characterization, ex-vivo and in-vivo studies. J Pharm Pharmacol. 2007;59(8):
1057-64. doi: 10.1211/jpp.59.8.0002.
[93] Aggarwal N, Goindi S. Preparation and in vivo evaluation of solid lipid
nanoparticles of griseofulvin for dermal use. J Biomed Nanotechnol. 2013;9(4):
564-76. doi: 10.1166/jbn.2013.1569.
[94] Lorwongngam A, Gaysorn C, Dangprasirt P, Kongmuang S. Griseofulvin solid
lipid nanoparticles based on microemulsion technique. Adv Mat Res. 2011;197-8.
doi: 10.4028/
[95] Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based
controlled release system for topical delivery of terbinafine hydrochloride. Eur J
Pharm Sci. 2013 May 13;49(2):311-22. doi: 10.1016/j.ejps.2013.03.013.
[96] Chen YC, Liu DZ, Liu JJ, Chang TW, Ho HO, Sheu MT. Development of
terbinafine solid lipid nanoparticles as a topical delivery system. Int J
Nanomedicine. 2012; 7:4409-18. doi: 10.2147/IJN.S33682.
[97] Mohanty B, Majumdar DK, Mishra SK, Panda AK, Patnaik S. Development and
characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery.
Pharm Dev Technol. 2015;20(4):458-64. doi: 10.3109/10837450.2014.882935.
[98] Khare A, Singh I, Pawar P, Grover K. Design and evaluation of voriconazole
loaded solid lipid nanoparticles for ophthalmic application. J Drug Deliv. 2016;
2016:6590361. doi: 10.1155/2016/6590361.
[99] Kumar R, Sinha VR. Solid lipid nanoparticle: an efficient carrier for improved
ocular permeation of voriconazole. Drug Dev Ind Pharm. 2016;42(12):1956-1967.
doi: 10.1080/03639045.2016.1185437.
[100] Pandurangan DK, Bodagala P, Palanirajan VK, Govindaraj S. Formulation and
evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel. Int J
Pharm Investig. 2016;6(1):56-62. doi: 10.4103/2230-973X.176488.
[101] Youshia J, Kamel AO, El Shamy A, Mansour S. Design of cationic nanostructured
heterolipid matrices for ocular delivery of methazolamide. Int J Nanomedicine.
2012;7:2483-96. doi: 10.2147/IJN.S28307.
[102] Mehrabani Yeganeh E, Bagheri H, Mahjub R. Preparation, statistical optimization
and in-vitro characterization of a dry powder inhaler (DPI) containing solid lipid
nanoparticles encapsulating amphotericin B: Ion paired complexes with distearoyl
phosphatidylglycerol. Iran J Pharm Res. 2020 Summer;19(3):45-62. doi: 10.2203
[103] Oubiña JR. Ébola 2014: drama y esperanza [Ebola 2014: drama and hope]. Rev
Argent Microbiol. 2014;46(4):283-7. doi: 10.1016/S0325-7541(14)70083-5.
[104] Bratanich A. MERS-CoV: transmisión y el papel de nuevas especies hospederas
[MERS-CoV, transmission and the role of new host species]. Rev Argent Microbiol.
2015;47(4):279-81. doi: 10.1016/j.ram.2015.11.001.
[105] Cuestas ML. Desde los astros y el frío hasta el virus pandémico de la influenza A
(H1N1): una amenaza permanente para la humanidad [From stars and cold to the
pandemic Influenza A (H1N1) virus: A permanent threat to humanity]. Rev Argent
Microbiol. 2016;48(3):185-186.. doi: 10.1016/j.ram.2016.08.001.
[106] Minassian ML. Virus Zika: Crónica de una pandemia ¿impensada? [Zika virus:
chronicle of an “unexpected” pandemic]. Rev Argent Microbiol. 2016;48(2):97-9.
doi: 10.1016/j.ram.2016.06.001.
[107] Cuestas ML, Minassian ML. Virus emergentes y reemergentes: un nuevo reto para
la salud mundial del milenio [Emerging and re-emerging viruses: A new challenge
for global health in this millennium]. Rev Argent Microbiol. 2020;52(1):1-3. doi:
[108] Cuestas ML, Rivero CW, Minassian ML, Castillo AI, Gentile EA, Trinks J, León
L, Daleoso G, Frider B, Lezama C, Galoppo M, Giacove G, Mathet VL, Oubiña
JR. Naturally occurring hepatitis B virus (HBV) variants with primary resistance
to antiviral therapy and S-mutants with potential primary resistance to adefovir in
Argentina. Antiviral Res. 2010;87(1):74-7. doi: 10.1016/j.antiviral.2010.04.005.
[109] De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol
Rev. 2016;29(3):695-747. doi: 10.1128/CMR.00102-15.
[110] Parthiban R, Sathishkumar S, Ramakrishnan P. Design and evaluation of acyclovir loaded solid lipid nanoparticles for sustained release. Drug Invent Today. 2020;
14(1), 108-11.
[111] El-Gizawy SA, El-Maghraby GM, Hedaya AA. Formulation of acyclovir-loaded
solid lipid nanoparticles: design, optimization, and in-vitro characterization. Pharm
Dev Technol. 2019;24(10):1287-98. doi: 10.1080/10837450.2019.1667385.
[112] Javan F, Vatanara A, Azadmanesh K, Nabi-Meibodi M, Shakouri M. Encapsulation
of ritonavir in solid lipid nanoparticles: in-vitro anti-HIV-1 activity using lentiviral
particles. J Pharm Pharmacol. 2017;69(8):1002-1009. doi: 10.1111/jphp.12737.
[113] Alex A, Paul W, Chacko AJ, Sharma CP. Enhanced delivery of lopinavir to the
CNS using Compritol-based solid lipid nanoparticles. Ther Deliv. 2011;2(1):25-35.
doi: 10.4155/tde.10.96.
[114] Chattopadhyay N, Zastre J, Wong HL, Wu XY, Bendayan R. Solid lipid
nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a
human brain endothelial cell line. Pharm Res. 2008;25(10):2262-71. doi: 10.1007/
[115] Negi JS, Chattopadhyay P, Sharma AK, Ram V. Development and evaluation of
glyceryl behenate based solid lipid nanoparticles (SLNs) using hot self nanoemulsification (SNE) technique. Arch Pharm Res. 2014;37(3):361-70. doi: 10.
[116] Gaur PK, Mishra S, Bajpai M, Mishra A. Enhanced oral bioavailability of efavirenz
by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies.
Biomed Res Int. 2014;2014:363404. doi: 10.1155/2014/363404.
[117] Joshy K S, Sharma CP, Kalarikkal N, Sandeep K, Thomas S, Pothen LA.
Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. Mater Sci
Eng C Mater Biol Appl. 2016;66:40-50. doi: 10.1016/j.msec.2016.03.031.
[118] Kuo YC, Wang CC. Cationic solid lipid nanoparticles with cholesterol-mediated
surface layer for transporting saquinavir to the brain. Biotechnol Prog. 2014;
30(1):198-206. doi: 10.1002/btpr.1834.
[119] Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation
of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chem Pharm Bull
(Tokyo). 2010;58(5):650-5. doi: 10.1248/cpb.58.650.
[120] Sankar V, Nareshkumar PN, Ajitkumar GN, Penmetsa SD, Hariharan S.
Comparative studies of lamivudine-zidovudine nanoparticles for the selective
uptake by macrophages. Curr Drug Deliv. 2012;9(5):506-14. doi: 10.2174/156720
[121] Shegokar R, Singh KK. Stavudine entrapped lipid nanoparticles for targeting
lymphatic HIV reservoirs. Pharmazie. 2011;66(4):264-71.
[122] Lahkar S, Kumar Das M. Surface modified kokum butter lipid nanoparticles for the
brain targeted delivery of nevirapine. J Microencapsul. 2018;35(7-8):680-694. doi:
[123] Desai J, Thakkar H. Effect of particle size on oral bioavailability of darunavir loaded solid lipid nanoparticles. J Microencapsul. 2016;33(7):669-78. doi:
[124] Jones E, Ojewole E, Kalhapure R, Govender T. In vitro comparative evaluation of
monolayered multipolymeric films embedded with didanosine-loaded solid lipid
nanoparticles: a potential buccal drug delivery system for ARV therapy. Drug Dev
Ind Pharm. 2014;40(5):669-79. doi: 10.3109/03639045.2014.892957.
[125] Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A. Solid lipid nanoparticles (SLN)
of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism
of uptake using chylomicron flow blocking approach. Int J Pharm. 2015;495(1):
439-46. doi: 10.1016/j.ijpharm.2015.09.014.
[126] Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the
formulation and optimization of solid lipid nanoparticles of efavirenz by high
pressure homogenization using design of experiments for brain targeting and
enhanced bioavailability. Biomed Res Int. 2017; 2017:5984014. doi: 10.1155/2017/
[127] Alukda D, Sturgis T, Youan BC. Formulation of tenofovir-loaded functionalized
solid lipid nanoparticles intended for HIV prevention. J Pharm Sci. 2011;100(8):
3345-56. doi: 10.1002/jps.22529.
[128] Lv Q, Yu A, Xi Y, Li H, Song Z, Cui J, Cao F, Zhai G. Development and evaluation
of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm.
2009;372(1-2):191-8. doi: 10.1016/j.ijpharm.2009.01.014.
[129] Jain S, Mistry MA, Swarnakar NK. Enhanced dermal delivery of acyclovir using
solid lipid nanoparticles. Drug Deliv Transl Res. 2011;1(5):395-406. doi: 10.1007/
[130] Kumar R, Sinha VR. Lipid nanocarrier: an efficient approach towards ocular
delivery of hydrophilic drug (valacyclovir). AAPS Pharm Sci Tech. 2017;18(3):
884-94. doi: 10.1208/s12249-016-0575-2.
[131] Zhang XG, Miao J, Li MW, Jiang SP, Hu FQ, Du YZ. Solid lipid nanoparticles
loading adefovir dipivoxil for antiviral therapy. J Zhejiang Univ Sci B. 2008;9(6):
506-10. doi: 10.1631/jzus.B0820047.
[132] Shi LL, Cao Y, Zhu XY, Cui JH, Cao QR. Optimization of process variables of
zanamivir-loaded solid lipid nanoparticles and the prediction of their cellular
transport in Caco-2 cell model. Int J Pharm. 2015;478(1):60-9. doi: 10.1016/j.ijph
[133] Cao Q, Wu H, Zhu L, Wu D, Zhu Y, Zhu Z, Cui J. Preparation and evaluation of
zanamivir-loaded solid lipid nanoparticles. J Control Release. 2011;152 Suppl
1:e2-4. doi: 10.1016/j.jconrel.2011.08.085.
[134] Ren J, Zou M, Gao P, Wang Y, Cheng G. Tissue distribution of borneol-modified
ganciclovir-loaded solid lipid nanoparticles in mice after intravenous
administration. Eur J Pharm Biopharm. 2013;83(2):141-8. doi: 10.1016/j.ejpb.201
[135] Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL,
Kasuga F, Rokni MB, Zhou XN, Fèvre EM, Sripa B, Gargouri N, Fürst T, Budke
CM, Carabin H, Kirk MD, Angulo FJ, Havelaar A, de Silva N. world health
organization estimates of the global and regional disease burden of 11 foodborne
parasitic diseases, 2010: A data synthesis. PLoS Med. 2015;12(12):e1001920. doi:
[136] Matthews KR. Controlling and coordinating development in vector-transmitted
parasites. Science. 2011;331(6021):1149-53. doi: 10.1126/science.1198077.
[137] CDC, Parasites. (accessed 30 January
[138] Theel ES, Pritt BS. Parasites. In: Hayden RT, Wolk DM, Carroll KC, Tang Y
(Eds.). Diagnostic Microbiology of the Immunocompromised Host, ASM, 2016, pp.
283-330. doi: 10.1128/9781555819040.ch18.
[139] Institute of Medicine (US) Forum on Microbial Threats. The causes and impacts of
neglected tropical and zoonotic diseases: Opportunities for integrated intervention
strategies. Washington (DC): National Academies Press (US); 2011. Workshop
Overview. Available from:
[140] Andrade LN, Oliveira DML, Chaud MV, Alves TFR, Nery M, da Silva CF,
Gonsalves JKC, Nunes RS, Corrêa CB, Amaral RG, Sanchez-Lopez E, Souto EB,
Severino P. Praziquantel-solid lipid nanoparticles produced by supercritical carbon
dioxide extraction: physicochemical characterization, release profile, and
cytotoxicity. Molecules. 2019;24(21):3881. doi: 10.3390/molecules24213881.
[141] Adekiya TA, Kumar P, Kondiah PPD, Ubanako P, Choonara YE. In vivo evaluation
of praziquantel-loaded solid lipid nanoparticles against S. mansoni infection in
preclinical murine models. Int J Mol Sci. 2022;23(16):9485. doi: 10.3390/ijms2
[142] Radwan A, El-Lakkany NM, William S, El-Feky GS, Al-Shorbagy MY, Saleh S,
Botros S. A novel praziquantel solid lipid nanoparticle formulation shows enhanced
bioavailability and antischistosomal efficacy against murine S. mansoni infection.
Parasit Vectors. 2019;12(1):304. doi: 10.1186/s13071-019-3563-z.
[143] Xie S, Pan B, Wang M, Zhu L, Wang F, Dong Z, Wang X, Zhou W. Formulation,
characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor
oil solid lipid nanoparticles. Nanomedicine (Lond). 20105(5):693-701. doi:
[144] de Souza AL, Andreani T, de Oliveira RN, Kiill CP, dos Santos FK, Allegretti SM,
Chaud MV, Souto EB, Silva AM, Gremião MP. In vitro evaluation of permeation,
toxicity and effect of praziquantel-loaded solid lipid nanoparticles against
Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis
treatment. Int J Pharm. 2014;463(1):31-7. doi: 10.1016/j.ijpharm.2013.12.022.
[145] Aminpour S, Rafiei A, Jelowdar A, Kouchak M. Evaluation of the protoscolicidal
effects of albendazole and albendazole loaded solid lipid nanoparticles. Iran J
Parasitol. 2019;14(1):127-35.
[146] Kohansal K, Rafiei A, Kalantari H, Jelowdar A, Salimi A, Rezaie A, Razi Jalali M.
Nephrotoxicity of albendazole and albendazole loaded solid lipid nanoparticles in
mice with experimental hydatidosis. Adv Pharm Bull. 2022;12(1):102-8. doi:
[147] Devi R, Jain A, Hurkat P, Jain SK. Dual drug delivery using lactic acid conjugated
sln for effective management of neurocysticercosis. Pharm Res. 2015;32(10):3137-
48. doi: 10.1007/s11095-015-1677-3.
[148] Permana AD, Tekko IA, McCrudden MTC, Anjani QK, Ramadon D, McCarthy
HO, Donnelly RF. Solid lipid nanoparticle-based dissolving microneedles: A
promising intradermal lymph targeting drug delivery system with potential for
enhanced treatment of lymphatic filariasis. J Control Release. 2019;316:34-52. doi:
[149] Siram K, Chellan VR, Natarajan T, Krishnamoorthy B, Mohamed Ebrahim HR,
Karanam V, Muthuswamy SS, Ranganathan HP. Solid lipid nanoparticles of
diethylcarbamazine citrate for enhanced delivery to the lymphatics: in vitro and in
vivo evaluation. Expert Opin Drug Deliv. 2014;11(9):1351-65. doi: 10.1517/174
[150] Rehman MU, Khan MA, Khan WS, Shafique M, Khan M. Fabrication of
Niclosamide loaded solid lipid nanoparticles: in vitro characterization and
comparative in vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46(8):1926-
34. doi: 10.1080/21691401.2017.1396996.
[151] Guo D, Dou D, Li X, Zhang Q, Bhutto ZA, Wang L. Ivermection-loaded solid lipid
nanoparticles: preparation, characterisation, stability and transdermal behaviour.
Artif Cells Nanomed Biotechnol. 2018;46(2):255-62. doi: 10.1080/21691401.2017.
[152] Aditya NP, Patankar S, Madhusudhan B, Murthy RS, Souto EB. Arthemeter-loaded
lipid nanoparticles produced by modified thin-film hydration: Pharmacokinetics,
toxicological and in vivo anti-malarial activity. Eur J Pharm Sci. 2010;40(5):448-
55. doi: 10.1016/j.ejps.2010.05.007.
[153] Masiiwa WL, Gadaga LL. Intestinal permeability of artesunate-loaded solid lipid
nanoparticles using the everted gut method. J Drug Deliv. 2018;2018:3021738. doi:
[154] Omwoyo WN, Melariri P, Gathirwa JW, Oloo F, Mahanga GM, Kalombo L, Ogutu
B, Swai H. Development, characterization and antimalarial efficacy of
dihydroartemisinin loaded solid lipid nanoparticles. Nanomedicine. 2016;12(3):
801-9. doi: 10.1016/j.nano.2015.11.017.
[155] Muga JO, Gathirwa JW, Tukulula M, Jura WGZO. In vitro evaluation of
chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles.
Malar J. 2018;17(1):133. doi: 10.1186/s12936-018-2302-9.
[156] Omwoyo WN, Ogutu B, Oloo F, Swai H, Kalombo L, Melariri P, Mahanga GM,
Gathirwa JW. Preparation, characterization, and optimization of primaquine loaded solid lipid nanoparticles. Int J Nanomedicine. 2014;9:3865-74. doi: 10.21
[157] Gupta Y, Jain A, Jain SK. Transferrin-conjugated solid lipid nanoparticles for
enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol.
2007;59(7):935-40. doi: 10.1211/jpp.59.7.0004.
[158] Khosravi M, Mohammad Rahimi H, Doroud D, Mirsamadi ES, Mirjalali H, Zali
MR. In vitro Evaluation of mannosylated paromomycin-loaded solid lipid
nanoparticles on acute toxoplasmosis. Front Cell Infect Microbiol. 2020;10:33. doi:
[159] Heidari-Kharaji M, Taheri T, Doroud D, Habibzadeh S, Badirzadeh A, Rafati S.
Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against
Leishmania in mice model. Parasite Immunol. 2016;38(10):599-608. doi: 10.11
[160] Parvez S, Yadagiri G, Gedda MR, Singh A, Singh OP, Verma A, Sundar S,
Mudavath SL. Modified solid lipid nanoparticles encapsulated with Amphotericin
B and Paromomycin: an effective oral combination against experimental murine
visceral leishmaniasis. Sci Rep. 2020;10(1):12243. doi: 10.1038/s41598-020-69
[161] Singh A, Yadagiri G, Parvez S, Singh OP, Verma A, Sundar S, Mudavath SL.
Formulation, characterization and in vitro anti-leishmanial evaluation of
amphotericin B loaded solid lipid nanoparticles coated with vitamin B12-stearic
acid conjugate. Mater Sci Eng C Mater Biol Appl. 2020;117:111279. doi: 10.10
[162] WHO, Global Tuberculosis Report 2020.
handle/10665/336069/9789240013131-eng.pdf (Accesed 02 February 2021).
[163] WHO, Tuberculosis.
is (Accesed 02 February 2021).
[164] Khatak S, Mehta M, Awasthi R, Paudel KR, Singh SK, Gulati M, Hansbro NG,
Hansbro PM, Dua K, Dureja H. Solid lipid nanoparticles containing anti-tubercular
drugs attenuate the Mycobacterium marinum infection. Tuberculosis (Edinb).
2020;125:102008. doi: 10.1016/
[165] Pandey R, Sharma S, Khuller GK. Oral solid lipid nanoparticle-based
antitubercular chemotherapy. Tuberculosis (Edinb). 2005;85(5-6):415-20. doi: 10.
[166] Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative
bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm. 2013;441(1-
2):202-12. doi: 10.1016/j.ijpharm.2012.11.042.
[167] Vieira ACC, Chaves LL, Pinheiro M, Lima SAC, Ferreira D, Sarmento B, Reis S.
Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to
macrophages. Artif Cells Nanomed Biotechnol. 2018;46(sup1):653-63. doi: 10.
[168] Vieira ACC, Chaves LL, Pinheiro S, Pinto S, Pinheiro M, Lima SC, Ferreira D,
Sarmento B, Reis S. Mucoadhesive chitosan-coated solid lipid nanoparticles for
better management of tuberculosis. Int J Pharm. 2018;536(1):478-85. doi: 10.
[169] Costa A, Sarmento B, Seabra V. Mannose-functionalized solid lipid nanoparticles
are effective in targeting alveolar macrophages. Eur J Pharm Sci. 2018;114:103-
113. doi: 10.1016/j.ejps.2017.12.006.
[170] Nemati E, Mokhtarzadeh A, Panahi-Azar V, Mohammadi A, Hamishehkar H,
Mesgari-Abbasi M, Ezzati Nazhad Dolatabadi J, de la Guardia M. Ethambutol Loaded Solid Lipid Nanoparticles as Dry Powder Inhalable Formulation for
Tuberculosis Therapy. AAPS Pharm Sci Tech. 2019;20(3):120. doi: 10.1208/s122
[171] Kumar M, Kakkar V, Mishra AK, Chuttani K, Kaur IP. Intranasal delivery of
streptomycin sulfate (STRS) loaded solid lipid nanoparticles to brain and blood. Int
J Pharm. 2014;461(1-2):223-33. doi: 10.1016/j.ijpharm.2013.11.038.
[172] Chetoni P, Burgalassi S, Monti D, Tampucci S, Tullio V, Cuffini AM, Muntoni E,
Spagnolo R, Zara GP, Cavalli R. Solid lipid nanoparticles as promising tool for
intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur J Pharm
Biopharm. 2016;109:214-223. doi: 10.1016/j.ejpb.2016.10.006.
[173] Nair AB, Shah J, Al-Dhubiab BE, Jacob S, Patel SS, Venugopala KN, Morsy MA,
Gupta S, Attimarad M, Sreeharsha N, Shinu P. Clarithromycin solid lipid
nanoparticles for topical ocular therapy: optimization, evaluation and in vivo
studies. Pharmaceutics. 2021;13(4):523. doi: 10.3390/pharmaceutics13040523.
[174] Sharma M, Gupta N, Gupta S. Implications of designing clarithromycin loaded
solid lipid nanoparticles on its pharmacokinetics, antibacterial activity and safety.
RSC Adv. 2016; doi: 10.1039/C6RA12841F.
[175] Dong Z, Xie S, Zhu L, Wang Y, Wang X, Zhou W. Preparation and in vitro, in vivo
evaluations of norfloxacin-loaded solid lipid nanopartices for oral delivery. Drug
Deliv. 2011;18(6):441-50. doi: 10.3109/10717544.2011.577109.
[176] Bhattacharyya S, Reddy P. Effect of surfactant on azithromycin dihydrate loaded
stearic acid solid lipid nanoparticles. Turk J Pharm Sci. 2019;16(4):425-31. doi:
[177] Pignatello R, Leonardi A, Fuochi V, Petronio Petronio G, Greco AS, Furneri PM.
A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid
nanoparticles: Formulation and microbiological evaluation. Nanomaterials. 2018;
8(5): 304.
[178] Hosseini SM, Farmany A, Abbasalipourkabir R, Soleimani Asl S, Nourian A,
Arabestani MR. Doxycycline-encapsulated solid lipid nanoparticles for the
enhanced antibacterial potential to treat the chronic brucellosis and preventing its
relapse: in vivo study. Ann Clin Microbiol Antimicrob. 2019;18(1):33. doi:
[179] Hosseini SM, Abbasalipourkabir R, Jalilian FA, Asl SS, Farmany A, Roshanaei G,
Arabestani MR. Doxycycline-encapsulated solid lipid nanoparticles as promising
tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics
study on J774A.1 cell line. Antimicrob Resist Infect Control. 2019;8:62. doi:
[180] Severino P, Chaud MV, Shimojo A, Antonini D, Lancelloti M, Santana MH, Souto
EB. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid
nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability
studies. Colloids Surf B Biointerfaces. 2015;129:191-7. doi: 10.1016/j.colsurfb.
[181] Severino P, Silveira EF, Loureiro K, Chaud MV, Antonini D, Lancellotti M,
Sarmento VH, da Silva CF, Santana MHA, Souto EB. Antimicrobial activity of
polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of
physicochemical properties and in vitro efficacy. Eur J Pharm Sci. 2017;106:177-
84. doi: 10.1016/j.ejps.2017.05.063.
[182] Aldawsari HM, Hosny KM. Solid lipid nanoparticles of Vancomycin loaded with
Ellagic acid as a tool for overcoming nephrotoxic side effects: preparation,
characterization, and nephrotoxicity evaluation. J Drug Deliv Sci Technol. 2018;
45: 76-80.
[183] Ghanem A, Healey R, Adly FG. Current trends in separation of plasmid DNA
vaccines: a review. Anal Chim Acta. 2013;760:1-15. doi: 10.1016/j.aca.2012.11.
[184] Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA
transfection. Proc Natl Acad Sci U S A. 1989;86(16):6077-81. doi: 10.1073/pnas.
[185] Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-Based
Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to
COVID-19 Vaccines. Vaccines (Basel). 2021 Apr 8;9(4):359. doi: 10.3390/vac
[186] Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines – a new era in
vaccinology. Nat Rev Drug Discov. 2018;17(4):261-279. doi: 10.1038/nrd.2017.
[187] Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN,
McCullough MP, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ,
McDermott A, Flach B, Doria-Rose NA, Corbett KS, Morabito KM, O’Dell S,
Schmidt SD, Swanson PA 2nd, Padilla M, Mascola JR, Neuzil KM, Bennett H, Sun
W, Peters E, Makowski M, Albert J, Cross K, Buchanan W, Pikaart-Tautges R,
Ledgerwood JE, Graham BS, Beigel JH; mRNA-1273 Study Group. An mRNA
Vaccine against SARS-CoV-2 – Preliminary Report. N Engl J Med. 2020;383(20):
1920-1931. doi: 10.1056/NEJMoa2022483.
[188] Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly
LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene
therapy vectors. Oncotarget. 2015;6(31):30675-703. doi: 10.18632/oncotarget.51
[189] Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J
Clin Diagn Res. 2015;9(1):GE01-6. doi: 10.7860/JCDR/2015/10443.5394.
[190] Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral
gene therapy: Gains and challenges of non-invasive administration methods. J
Control Release. 2016;240:165-190. doi: 10.1016/j.jconrel.2015.12.012.
[191] del Pozo-Rodríguez A, Delgado D, Solinís MA, Gascón AR, Pedraz JL. Solid lipid
nanoparticles: formulation factors affecting cell transfection capacity. Int J Pharm.
2007;339(1-2):261-8. doi: 10.1016/j.ijpharm.2007.03.015.
[192] Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC.
Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to
improve transfection efficacy. Eur J Pharm Biopharm. 2004;57(1):1-8. doi: 10.10
[193] Han Z, Conley SM, Makkia R, Guo J, Cooper MJ, Naash MI. Comparative analysis
of DNA nanoparticles and AAVs for ocular gene delivery. PLoS One. 2012;7(12):
e52189. doi: 10.1371/journal.pone.0052189.
[194] Slivac I, Guay D, Mangion M, Champeil J, Gaillet B. Non-viral nucleic acid
delivery methods. Expert Opin Biol Ther. 2017;17(1):105-18. doi: 10.1080/147125
[195] Rivest V, Phivilay A, Julien C, Bélanger S, Tremblay C, Emond V, Calon F. Novel
liposomal formulation for targeted gene delivery. Pharm Res. 2007;24(5):981-90.
doi: 10.1007/s11095-006-9224-x.
[196] Masotti A, Mossa G, Cametti C, Ortaggi G, Bianco A, Grosso ND, Malizia D,
Esposito C. Comparison of different commercially available cationic liposome DNA lipoplexes: Parameters influencing toxicity and transfection efficiency.
Colloids Surf B Biointerfaces. 2009;68(2):136-44. doi: 10.1016/j.colsurfb.2008.
[197] Martini E, Fattal E, de Oliveira MC, Teixeira H. Effect of cationic lipid
composition on properties of oligonucleotide/emulsion complexes: Physico chemical and release studies. Int J Pharm. 2008;352(1-2):280-6. doi: 10.1016/
[198] Hassett KJ, Benenato KE, Jacquinet E, Lee A, Woods A, Yuzhakov O, Himansu S,
Deterling J, Geilich BM, Ketova T, Mihai C, Lynn A, McFadyen I, Moore MJ,
Senn JJ, Stanton MG, Almarsson Ö, Ciaramella G, Brito LA. Optimization of Lipid
Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol Ther
Nucleic Acids. 2019;15:1-11. doi: 10.1016/j.omtn.2019.01.013.
[199] Penumarthi A, Parashar D, Abraham A, Dekiwadia C, Macreadie I, Shukla R,
Smooker P. Solid lipid nanoparticles mediate non-viral delivery of plasmid DNA
to dendritic cells. J Nanoparticle Res. 2017;19(210):1–10. doi: 10.1007/s11051-
[200] Kim HR, Kim IK, Bae KH, Lee SH, Lee Y, Park TG. Cationic solid lipid
nanoparticles reconstituted from low density lipoprotein components for delivery
of siRNA. Mol Pharm. 2008;5(4):622-31. doi: 10.1021/mp8000233.
[201] Asasutjarit R, Lorenzen SI, Sirivichayakul S, Ruxrungtham K, Ruktanonchai U,
Ritthidej GC. Effect of solid lipid nanoparticles formulation compositions on their
size, zeta potential and potential for in vitro pHIS-HIV-hugag transfection. Pharm
Res. 2007;24(6):1098-107. doi: 10.1007/s11095-007-9234-3.
[202] Li S, Yang Y, Lin X, Li Z, Ma G, Su Z, Zhang S. Biocompatible cationic solid lipid
nanoparticles as adjuvants effectively improve humoral and T cell immune
response of foot and mouth disease vaccines. Vaccine. 2020;38(11):2478-2486.
doi: 10.1016/j.vaccine.2020.02.004.
[203] Fàbregas A, Prieto-Sánchez S, Suñé-Pou M, Boyero-Corral S, Ticó JR, García Montoya E, Pérez-Lozano P, Miñarro M, Suñé-Negre JM, Hernández-Munain C,
Suñé C. Improved formulation of cationic solid lipid nanoparticles displays cellular
uptake and biological activity of nucleic acids. Int J Pharm. 2017;516(1-2):39-44.
doi: 10.1016/j.ijpharm.2016.11.026.
[204] Suñé-Pou M, Prieto-Sánchez S, El Yousfi Y, Boyero-Corral S, Nardi-Ricart A,
Nofrerias-Roig I, Pérez-Lozano P, García-Montoya E, Miñarro-Carmona M, Ticó
JR, Suñé-Negre JM, Hernández-Munain C, Suñé C. Cholesteryl oleate-loaded
cationic solid lipid nanoparticles as carriers for efficient gene-silencing therapy. Int
J Nanomedicine. 2018;13:3223-3233. doi: 10.2147/IJN.S158884.
[205] Apaolaza PS, Del Pozo-Rodríguez A, Solinís MA, Rodríguez JM, Friedrich U,
Torrecilla J, Weber BH, Rodríguez-Gascón A. Structural recovery of the retina in
a retinoschisin-deficient mouse after gene replacement therapy by solid lipid
nanoparticles. Biomaterials. 2016;90:40-9. doi: 10.1016/j.biomaterials.2016.03.00
[206] Francis JE, Skakic I, Dekiwadia C, Shukla R, Taki AC, Walduck A, Smooker PM.
Solid Lipid Nanoparticle Carrier Platform Containing Synthetic TLR4 Agonist
Mediates Non-Viral DNA Vaccine Delivery. Vaccines (Basel). 2020;8(3):551. doi:
[207] Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for
peptides and proteins. Adv Drug Deliv Rev. 2007;59(6):478-90. doi: 10.1016/
[208] Mishra H, Mishra D, Mishra PK, Nahar M, Dubey V, Jain NK. Evaluation of solid
lipid nanoparticles as carriers for delivery of hepatitis B surface antigen for
vaccination using subcutaneous route. J Pharm Pharm Sci. 2010;13(4):495-509.
doi: 10.18433/j3xk53.
[209] Saraf S, Sahoo RN, Jain S, Mallick S. M-cell Targeting Acid-resistant Oral Vaccine
Delivery for Immunization Against Hepatitis B Infection Using Cationic Solid
Lipid Nanoparticles. 2021. doi:
[210] del Pozo-Rodríguez A, Delgado D, Solinís MA, Gascón AR, Pedraz JL. Solid lipid
nanoparticles: formulation factors affecting cell transfection capacity. Int J Pharm.
2007;339(1-2):261-8. doi: 10.1016/j.ijpharm.2007.03.015.
[211] Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—A new era in
vaccinology. Nat. Rev. Drug Discov. 2018;17:261–279. doi: 10.1038/nrd.2017.24
[212] Vogel, AB, Lambert, L, Kinnear, E, Busse, D, Erbar, S, Reuter, KC, Wicke, L,
Perkovic, M, Beissert, T, Haas, H, Reece, ST, Sahin, U, & Tregoning, JS. Self-
Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA
Vaccines but at Much Lower Doses. Mol. Ther. 2018;26:446–455. doi:
[213] Magini D, Giovani C, Mangiavacchi S, Maccari S, Cecchi R, Ulmer JB, De
Gregorio E, Geall AJ, Brazzoli M, Bertholet S. Self-Amplifying mRNA Vaccines
Expressing Multiple Conserved Influenza Antigens Confer Protection against
Homologous and Heterosubtypic Viral Challenge. PLoS ONE. 2016;11:e0161193.
doi: 10.1371/journal.pone.0161193.
[214] Anderluzzi G, Lou G, Gallorini S, Brazzoli M, Johnson R, O’Hagan DT, Baudner
BC, Perrie Y. Investigating the Impact of Delivery System Design on the Efficacy
of Self-Amplifying RNA Vaccines. Vaccines (Basel). 2020;8(2):212. doi: 10.33
[215] Doroud D, Zahedifard F, Vatanara A, Najafabadi AR, Taslimi Y, Vahabpour R,
Torkashvand F, Vaziri B, Rafati S. Delivery of a cocktail DNA vaccine encoding
cysteine proteinases type I, II and III with solid lipid nanoparticles potentiate
protective immunity against Leishmania major infection. J Control Release. 2011;
153(2):154-62. doi: 10.1016/j.jconrel.2011.04.011.
[216] Saljoughian N, Zahedifard F, Doroud D, Doustdari F, Vasei M, Papadopoulou B,
Rafati S. Cationic solid-lipid nanoparticles are as efficient as electroporation in
DNA vaccination against visceral leishmaniasis in mice. Parasite Immunol.
2013;35(12):397-408. doi: 10.1111/pim.12042.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!