Publish with Nova Science Publishers
We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!
$39.50
Vibha Vinayakumar Bhat¹ and P. R. Chetana²
¹Department of Chemistry, M S Ramaiah College of Arts, Science and Commerce, MSR Nagar, Bengaluru, Karnataka, India
²Department of Chemistry, Central College Campus, Bengaluru City University, Bengaluru, India
Part of the book: What to Know about Lanthanum
The rise of applications of lanthanum (III) metal ions in inorganic and bioinorganic fields are tremendous in recent years. The geometrical diversities due to variable coordination number, high Lewis acidity, and higher charge make La(III) ion bind to hard bases such as O, and N donor ligands making the complexes very beneficial in the field of luminescence, diagnostics and therapeutical agents. In recent years, rapid and continued interests have emerged in investigating and designing new molecules and metal complexes containing La(III) metal ion and other lanthanides in the field of medicine, MRI technology, immunoassays, separation techniques, etc. La(III)-complexes have been investigated for their applications as nucleic acid and protein binding agents, chemical nucleases, antiproliferative agents, antioxidants as well as antimicrobial agents. The stability induced by La(III) metal ion to the organic, bulkier ligands could be successfully utilized as a drug transport vehicle toward the target site in the biological systems. Here in this chapter, we would like to explain the synthetic methods of various La(III) complexes, their variable coordination geometry, applications in the field of luminescence, binding abilities towards nucleic acids and proteins, and cytotoxic activities against various cancerous cell lines, antimicrobial activities and antioxidant activities. The structural and application diversities of La(III)-complexes are graphically shown below.
Keywords: Lanthanum(III) complex, DNA binder, chemical nuclease, antimicrobial, photoluminescent
[1] Periodic Table: History, (n.d.). https://www.rsc.org/periodic-table/history
(accessed May 7, 2022).
[2] IYPT promotional pack, Royal Society of Chemistry. (n.d.). https://www.rsc.org/
iypt/iypt-elements/ (accessed May 7, 2022).
[3] Yerly, F., F.A. Dunand, E. Tóth, A. Figueirinha, Z. Kovács, A.D. Sherry, C.F.G.C.
Geraldes, A.E. Merbach, Spectroscopic Study of the Hydration Equilibria and
Water Exchange Dynamics of Lanthanide(III) Complexes of 1,7-
Bis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DO2A), European Journal of
Inorganic Chemistry. 2000 (2000) 1001–1006. https://doi.org/10.1002/
(SICI)1099-0682(200005)2000:5<1001::AID-EJIC1001>3.0.CO;2-J.
[4] Cotton, S.A. Establishing coordination numbers for the lanthanides in simple
complexes, Comptes Rendus Chimie. 8 (2005) 129–145. https://doi.org/10.1016/
j.crci.2004.07.002.
[5] Wang, C., X. Leng, Y. Chen, Tris(boratabenzene) Lanthanum Complexes:
Synthesis, Structure, and Reactivity, Organometallics. 34 (2015) 3216–3221.
https://doi.org/10.1021/acs.organomet.5b00262.
[6] Zhao, G., F. Li, H. Lin, H. Lin, Synthesis, characterization and biological activity
of complexes of lanthanum(III) with 2-(1′-phenyl- 2′-carboxyl-3′-aza-n-butyl)-
1,10-phenanthroline and 2-(1′-p-phenol-2′-carboxyl-3′-aza-n-butyl)-1,10-phenan throline, Bioorganic & Medicinal Chemistry. 15 (2007) 533–540. https://doi.org/
10.1016/j.bmc.2006.09.032.
[7] Bradley, D.C., J.S. Ghotra, F.A. Hart, M.B. Hursthouse, P.R. Raithby, Low co ordination numbers in lanthanoid and actinoid compounds. Part 2. Syntheses,
properties, and crystal and molecular structures of triphenylphosphine oxide and
peroxo-derivatives of [bis(trimethylsilyl)-amido]lanthanoids, J. Chem. Soc., Dalton
Trans. (1977) 1166–1172. https://doi.org/10.1039/DT9770001166.
[8] Deacon, G.B., B.M. Gatehouse, Q. Shen, G.N. Ward, E.R.T. Thiekink,
Organoamido- and aryloxo-lanthanides—VII. The x-ray structure of five coordinate [La(OC6H6Ph2-2,6)3(THF)2]·THF, Polyhedron. 12 (1993) 1289–1294.
https://doi.org/10.1016/S0277-5387(00)84318-1.
[9] Clark, D.L., R.V. Hollis, B.L. Scott, J.G. Watkin, Alkali Metal Induced Structural
Changes in Complexes Containing Anionic Lanthanum Aryloxide Moieties. X-ray
Crystal Structures of (THF)La(OAr)2(μ-OAr)2Li(THF), (THF)La(OAr)2(μ OAr)2Na(THF)2, and CsLa(OAr)4 (Ar = 2,6-i-Pr2C6H3), Inorg. Chem. 35 (1996)
667–674. https://doi.org/10.1021/ic9510472.
[10] Siddappa, K., S.B. Mane, D. Manikprabhu, La(III) complex involving the O,N donor environment of quinazoline-4(3H)-one Schiff’s base and their antimicrobial
attributes against methicillin-resistant Staphylococcus aureus (MRSA),
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 130
(2014) 634–638. https://doi.org/10.1016/j.saa.2014.03.115.
[11] Aguiari, A., S. Tamburini, P. Tomasin, P.A. Vigato, Lanthanide(III) macroacyclic
and macrocyclic Schiff base complexes containing oxamidic groups, Inorganica
Chimica Acta. 256 (1997) 199–210. https://doi.org/10.1016/S0020-
1693(96)05441-2.
[12] Kulkarni, A., S.A. Patil, P.S. Badami, Synthesis, characterization, DNA cleavage
and in vitro antimicrobial studies of La(III), Th(IV) and VO(IV) complexes with
Schiff bases of coumarin derivatives, European Journal of Medicinal Chemistry.
44 (2009) 2904–2912. https://doi.org/10.1016/j.ejmech.2008.12.012.
[13] Starynowicz, P., J. Lisowski, Monomeric, dimeric and polymeric lanthanide(III)
complexes of a hexaazamacrocyclic imine derived from 2,6-diformylpyridine and
ethylenediamine, Polyhedron. 85 (2015) 232–238. https://doi.org/10.1016/j.
poly.2014.08.032.
[14] Chetana, P., V. Bhat, M. Dhale, Hetero-Binuclear Complexes of Lanthanum (III)
Using Bridging N,N′-Bis(2-Pyridylmethyl)Oxamide and Terminal 1,10-
Phenanthroline: Synthesis, Characterization and Biological Evaluation,
International Journal of Pharmaceutical Sciences and Drug Research. 10 (2018).
https://doi.org/10.25004/IJPSDR.2018.100606.
[15] Barta, C.A., K. Sachs-Barrable, J. Jia, K.H. Thompson, K.M. Wasan, C. Orvig,
Lanthanide containing compounds for therapeutic care in bone resorption disorders,
Dalton Trans. (2007) 5019–5030. https://doi.org/10.1039/B705123A.
[16] Mawani, Y., J.F. Cawthray, S. Chang, K. Sachs-Barrable, D.M. Weekes, K.M.
Wasan, C. Orvig, In vitro studies of lanthanide complexes for the treatment of
osteoporosis, Dalton Trans. 42 (2013) 5999–6011. https://doi.org/10.
1039/C2DT32373G.
[17] Fryzuk, M.D., T.S. Haddad, S.J. Rettig, Phosphine complexes of yttrium,
lanthanum, and lutetium. Synthesis, thermolysis, and fluxional behavior of the
hydrocarbyl derivatives MR[N(SiMe2CH2PMe2)2]2. X-ray crystal structure of
[cyclic] Y[N(SiMe2CHPMe2)(SiMe2CH2PMe2)][N(SiMe2CH2PMe2)2], Orga nometallics. 10 (1991) 2026–2036. https://doi.org/10.1021/om00052a059.
[18] Roitershtein, D., Â. Domingos, L.C.J. Pereira, J.R. Ascenso, N. Marques,
Coordination of 2,2‘-Bipyridyl and 1,10-Phenanthroline to Yttrium and Lanthanum
Complexes Based on a Scorpionate Ligand, Inorg. Chem. 42 (2003) 7666–7673.
https://doi.org/10.1021/ic034838+.
[19] Kretschmer, W.P., A. Meetsma, B. Hessen, N.M. Scott, S. Qayyum, R. Kempe,
Lanthanum Dibromide Complexes of Sterically Demanding Aminopyridinato and
Amidinate Ligands, Journal of inorganic and general chemistry. 632 (2006) 1936–
1938. https://doi.org/10.1002/zaac.200600142.
[20] Neelima, K. Poonia, S. Siddiqui, M. Arshad, D. Kumar, In vitro anticancer activities
of Schiff base and its lanthanum complex, Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy. 155 (2016) 146–154. https://doi.org/
10.1016/j.saa.2015.10.015.
[21] Al-Karaghouli, A.R., R.O. Day, J.S. Wood, Crystal structure of tetrakis(2,2’-
bipyridine dioxide)lanthanum perchlorate: an example of cubic eight-coordination,
Inorg. Chem. 17 (1978) 3702–3706. https://doi.org/10.1021/ic50190a076.
[22] Al-Karaghouli, A.R., J.S. Wood, Crystal and molecular structures of the
octakis(pyridine N-oxide) lanthanide complexes M(PyO)8(ClO4)3, M = lanthanum
and neodymium, Inorg. Chem. 18 (1979) 1177–1184. https://doi.org/
10.1021/ic50195a001.
[23] Morrow, J.R., S. Amin, C.H. Lake, M.R. Churchill, Synthesis, structure, and
dynamic properties of the lanthanum(III) complex of 1,4,7,10-tetrakis(2-
carbamoylethyl)-1,4,7,10-tetraazacyclododecane, ACS Publications. (2002).
https://doi.org/10.1021/ic00073a017.
[24] Zipp, A.P., S.G. Zipp, Disulfoxide complexes with lanthanum perchlorate, Journal
of Inorganic and Nuclear Chemistry. 42 (1980) 395–397. https://doi.org/
10.1016/0022-1902(80)80013-3.
[25] Lescop, C., E. Belorizky, D. Luneau, P. Rey, Synthesis, Structures, and Magnetic
Properties of a Series of Lanthanum(III) and Gadolinium(III) Complexes with
Chelating Benzimidazole-Substituted Nitronyl Nitroxide Free Radicals. Evidence
for Antiferromagnetic GdIII−Radical Interactions, Inorg. Chem. 41 (2002) 3375–
3384. https://doi.org/10.1021/ic0200038.
[26] Kay, J., J.W. Moore, M.D. Glick, Structural studies of bridged lanthanide(III)
complexes. Diaquotri(nicotinic acid)holmium(III) hexa(isothiocyanato)chromate
(III) dihydrate and diaquotris(isonicotinato)lanthanum(III), Inorg. Chem. 11 (1972)
2818–2827. https://doi.org/10.1021/ic50117a047.
[27] Shi, T., A.C. Hopkinson, K.W.M. Siu, Coordination of Triply Charged Lanthanum
in the Gas Phase: Theory and Experiment, Chemistry – A European Journal. 13
(2007) 1142–1151. https://doi.org/10.1002/chem.200601074.
[28] Shavaleev, N.M., S.V. Eliseeva, R. Scopelliti, J.-C.G. Bünzli, Influence of
Symmetry on the Luminescence and Radiative Lifetime of Nine-Coordinate
Europium Complexes, Inorg. Chem. 54 (2015) 9166–9173. https://doi.org/10.
1021/acs.inorgchem.5b01580.
[29] Hussain, A., K. Somyajit, B. Banik, S. Banerjee, G. Nagaraju, A.R. Chakravarty,
Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide(III)
complex formation, Dalton Trans. 42 (2012) 182–195. https://doi.org/10.
1039/C2DT32042H.
[30] Feng, R., F.-L. Jiang, M.-Y. Wu, L. Chen, C.-F. Yan, M.-C. Hong, Structures and
Photoluminescent Properties of the Lanthanide Coordination Complexes with
Hydroxyquinoline Carboxylate Ligands, Crystal Growth & Design. 10 (2010)
2306–2313. https://doi.org/10.1021/cg100026d.
[31] Vasilescu, I.M., M. Taş, P.C. Junk, Structural diversity of lanthanum saccharinates
induced by 1,10-phenanthroline: A synthetic and X-ray crystallographic study,
Polyhedron. 87 (2015) 259–267. https://doi.org/10.1016/j.poly.2014.11.009.
[32] Lu, Y., G. Deng, F. Miao, Z. Li, Metal-ion interactions with sugars. Crystal
structures and FT-IR studies of the LaCl3–ribopyranose and CeCl3–ribopyranose
complexes, Carbohydrate Research. 339 (2004) 1689–1696. https://doi.org/10.
1016/j.carres.2004.04.009.
[33] Hussain, A., D. Lahiri, M.S. Ameerunisha Begum, S. Saha, R. Majumdar, R.R.
Dighe, A.R. Chakravarty, Photocytotoxic Lanthanum(III) and Gadolinium(III)
Complexes of Phenanthroline Bases Showing Light-Induced DNA Cleavage
Activity, Inorg. Chem. 49 (2010) 4036–4045. https://doi.org/10.1021/ic901791f.
[34] Clapp, L.A., C.J. Siddons, J.R. Whitehead, D.G. VanDerveer, R.D. Rogers, S.T.
Griffin, S.B. Jones, R.D. Hancock, Factors Controlling Metal-Ion Selectivity in the
Binding Sites of Calcium-Binding Proteins. The Metal-Binding Properties of
Amide Donors. A Crystallographic and Thermodynamic Study, Inorg. Chem. 44
(2005) 8495–8502. https://doi.org/10.1021/ic050632s.
[35] Jiang, B., M. Wang, C. Li, J. Xie, DNA-binding and hydrolytic cleavage promoted
by tetraazamacycle La(III) and Ce(III) complexes, Med Chem Res. 22 (2013) 3398–
3404. https://doi.org/10.1007/s00044-012-0357-7.
[36] Chetana, P.R., D.R. Navya, V.V. Bhat, B.S. Srinatha, M.A. Dhale, Studies on DNA
Interactions and Biological Activities of Lanthanum(III) Complexes with 4-
Quinoline Terpyridine and 1,10-Phenanthroline, Asian Journal of Chemistry. 31
(2019) 1265–1274.
[37] Premkumar, T., S. Govindarajan, N.P. Rath, V. Manivannan, New nine and ten
coordinated complexes of lanthanides with bidentate 2-pyrazinecarboxylate
containing hydrazinium cation, Inorganica Chimica Acta. 362 (2009) 2941–2946.
https://doi.org/10.1016/j.ica.2008.12.014.
[38] Yang, L., X. Hua, J. Xue, Q. Pan, L. Yu, W. Li, Y. Xu, G. Zhao, L. Liu, K. Liu, J.
Chen, J. Wu, Interactions between Metal Ions and Carbohydrates. Spectroscopic
Characterization and the Topology Coordination Behavior of Erythritol with
Trivalent Lanthanide Ions, Inorg. Chem. 51 (2012) 499–510. https://doi.org/
10.1021/ic2019605.
[39] Li, X.D., Gan, M. Tan, X. Wang, Synthesis and characterization of lanthanide
complexes of 1,4,7,10,13-pentaazacyclopentadecane, Polyhedron. 16 (1997) 3991–
3995. https://doi.org/10.1016/S0277-5387(97)00181-2.
[40] Bray, D.J., J.K. Clegg, L.F. Lindoy, D. Schilter, Self-assembled Metallo supramolecular Systems Incorporating β-Diketone Motifs as Structural Elements,
in: R. van Eldik, K. Bowman-James (Eds.), Advances in Inorganic Chemistry,
Academic Press, 2006: pp. 1–37. https://doi.org/10.1016/S0898-8838(06)59001-4.
[41] Patil, S., V. Naik, D. Bilehal, N. Mallur, Synthesis, Spectral and Antimicrobial
Studies of Lanthanide (III) Nitrate Complexes with Terdentate ONO Donor
Hydrazones, Journal of Experimental Sciences 2011, 2(7): 15-20. 2 (2011) 15–20.
[42] Casotto, G., B. Zarli, G. Faraglia, L. Sindellari, N-substituted ethylcarbamate
complexes of thorium(IV) and lanthanum(III) nitrates, Inorganica Chimica Acta.
95 (1984) 247–250. https://doi.org/10.1016/S0020-1693(00)84892-6.
[43] Yan, C., Y. Zhang, S. Gao, B. Li, C. Huang, G. Xu, Synthesis and structure of
tributylammonium hexanitrate lanthanum, Journal of Alloys and Compounds. 225
(1995) 385–389. https://doi.org/10.1016/0925-8388(94)07043-1.
[44] Perdih, F., A. Demšar, A. Pevec, S. Petriček, I. Leban, G. Giester, J. Sieler, H.W.
Roesky, Synthesis and the crystal structures of a monoanionic tetrafluorodentate
ligand and its complex with lanthanum ion, Polyhedron. 20 (2001) 1967–1971.
https://doi.org/10.1016/S0277-5387(01)00789-6.
[45] Deng, Y.-H., G.-R. Gao, J. Liu, H. Liy. Synthesis and Crystal Structure of an
Unusual Dodecacoordinated Lanthanum Complex by Phenanthroline and Nitrate
(phenH)_2[La(NO_3)_5(phen)]·CH_3OH, Chinese Journal of Structural
Chemistry 30 (2011) 690–696.
[46] Pandey, O.P. Mononuclear and binuclear lanthanum(III) complexes of macrocyclic
ligands derived from 2,6-diacetylpyridine, Polyhedron. 6 (1987) 1021–1025.
https://doi.org/10.1016/S0277-5387(00)80948-1.
[47] Fedushkin, I.L., M.N. Bochkarev, H. Schumann, L. Esser, Binuclear complexes of
La(III) and Eu(II) with the bridging naphthalene dianion. Synthesis and X-ray
crystallographic analysis of [μ2-η4:η4-C10H8][LaI2(THF)3]2 and [μ2-η4:η4-
C10H8][EuI(DME)2]2, Journal of Organometallic Chemistry. 489 (1995) 145–
151. https://doi.org/10.1016/0022-328X(94)05145-2.
[48] Guerriero, P., P.A. Vigato, J.-C.G. Bünzli, E. Moret, Macrocyclic complexes with
lanthanoid salts part 38. Synthesis and luminescence study of homo- and hetero binuclear complexes of lanthanides with a new cyclic compartmental Schiff base,
J. Chem. Soc., Dalton Trans. (1990) 647–655. https://doi.org/10.1039/
DT9900000647.
[49] Yang, E.-C., P.-X. Dai, X.-G. Wang, X.-J. Zhao, Two Discrete Lanthanum(III)
Complexes with Bulky Aromatic Mixed Ligands: Syntheses, Crystal Structures and
Fluorescent Properties, Journal of inorganic and general chemistry. 635 (2009)
346–350. https://doi.org/10.1002/zaac.200800392.
[50] Inoue, M.B., M. Inoue, Q. Fernando, Yttrium(III) and lanthanum(III) complexes of
a 15-membered macrocycle with three pendant carboxymethyl groups, Acta Cryst
C. 50 (1994) 1037–1040. https://doi.org/10.1107/S0108270193011151.
[51] Ma, S.-L., W.-X. Zhu, G.-H. Huang, D.-Q. Yuan, X. Yan, Novel three-dimensional
network of lanthanum(III) complex {[La2(BTA)6(4,4′-bpdo)1.5]·1.5H2O}n (BTA
= benzoyltrifluoroacetone; 4,4′-bpdo=4,4′-bipyridine dioxide), Journal of
Molecular Structure. 646 (2003) 89–94. https://doi.org/10.
1016/S0022-2860(02)00617-8.
[52] Zheng, K., L. Zhu, Y.-T. Li, Z.-Y. Wu, C.-W. Yan, Synthesis and crystal structure
of new dicopper(II) complexes having asymmetric N,N′-bis(substituted)oxamides
with DNA/protein binding ability: In vitro anticancer activity and molecular
docking studies, Journal of Photochemistry and Photobiology B: Biology. 149
(2015) 129–142. https://doi.org/10.1016/j.jphotobiol.2015.05.014.
[53] Hall, J., D. Hüsken, R. Häner, Sequence-Specific Cleavage of RNA Using
Macrocyclic Lanthanide Complexes Conjugated to Oligonucleotides: A Structure
Activity Study, Nucleosides and Nucleotides. 16 (1997) 1357–1368.
https://doi.org/10.1080/07328319708006187.
[54] Liu, X., Y. Li, Y. Ci, Interaction of the La3+
-Morin Complex with DNA, Analytical
Sciences. 13 (1997) 939–944. https://doi.org/10.2116/analsci.13.939.
[55] Branum, M.E., L. Que Jr., Double-strand DNA hydrolysis by dilanthanide
complexes, JBIC. 4 (1999) 593–600. https://doi.org/10.1007/s007750050382.
[56] Zhou, J., L. Wang, J. Wang, N. Tang, Synthesis, characterization, antioxidative and
antitumor activities of solid quercetin rare earth(III) complexes, Journal of
Inorganic Biochemistry. 83 (2001) 41–48. https://doi.org/10.1016/S0162-
0134(00)00128-8.
[57] Zhou, J.-H., S.-Q. Xia, J.-R. Chen, X.-S. Wang, B.-W. Zhang, H.-J. Zhang, P. Zou,
X.-C. Ai, J.-P. Zhang, Surface binding and improved photodamage of the
lanthanum ion complex of hypocrellin A to calf thymus DNA, Journal of
Photochemistry and Photobiology A: Chemistry. 165 (2004) 143–147.
https://doi.org/10.1016/j.jphotochem.2004.03.015.
[58] Rittich, B., A. Španová, M. Falk, M.J. Beneš, M. Hrubý, Cleavage of double
stranded plasmid DNA by lanthanide complexes, Journal of Chromatography B.
800 (2004) 169–173. https://doi.org/10.1016/j.jchromb.2003.09.011.
[59] Qin, D., G. Qi, Z. Yang, J. Wu, Y. Liu, Fluorescence and Biological Evaluation of
the La(III) and Eu(III) Complexes with 7-methoxychromone-3-carbaldehyde
Benzoyl Hydrazone Schiff Base, J Fluoresc. 19 (2009) 409–418.
https://doi.org/10.1007/s10895-008-0427-x.
[60] Ansari, A.A., R.K. Sharma, Synthesis and Characterization of a Biologically Active
Lanthanum(III)–Catechin Complex and DNA Binding Spectroscopic Studies,
Spectroscopy Letters. 42 (2009) 178–185. https://doi.org/10.1080/
00387010902827718.
[61] Mohanan, K., R. Aswathy, L.P. Nitha, N.E. Mathews, B.S. Kumari, Synthesis,
spectroscopic characterization, DNA cleavage and antibacterial studies of a novel
tridentate Schiff base and some lanthanide(III) complexes, Journal of Rare Earths.
32 (2014) 379–388. https://doi.org/10.1016/S1002-0721(14)60081-8.
[62] Asadi, Z., H. Mosallaei, M. Sedaghat, R. Yousefi, Competitive binding affinity of
two lanthanum(III) macrocycle complexes toward DNA and bovine serum albumin
in water, J Iran Chem Soc. 14 (2017) 2367–2385. https://doi.org/10.1007/
s13738-017-1172-3.
[63] Asadi, Z., N. Nasrollahi, H. Karbalaei-Heidari, V. Eigner, M. Dusek, N. Mobaraki,
R. Pournejati, Investigation of the complex structure, comparative DNA-binding
and DNA cleavage of two water-soluble mono-nuclear lanthanum(III) complexes
and cytotoxic activity of chitosan-coated magnetic nanoparticles as drug delivery
for the complexes, Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy. 178 (2017) 125–135. https://doi.org/
10.1016/j.saa.2017.01.037.
[64] Kostova, I., I. Manolov, S. Konstantinov, M. Karaivanova, Synthesis,
physicochemical characterisation and cytotoxic screening of new complexes of
cerium, lanthanum and neodymium with Warfarin and Coumachlor sodium salts,
European Journal of Medicinal Chemistry. 34 (1999) 63–68. https://doi.org/
10.1016/S0223-5234(99)80041-5.
[65] Manolov, I., I. Kostova, S. Konstantinov, M. Karaivanova, Synthesis,
physicochemical characterization and cytotoxic screening of new complexes of
cerium, lanthanum and neodymium with Niffcoumar sodium salt, European
Journal of Medicinal Chemistry. 34 (1999) 853–858. https://doi.org/10.1016/
S0223-5234(99)00207-X.
[66] Kostova, I., R. Kostova, G. Momekov, N. Trendafilova, M. Karaivanova,
Antineoplastic activity of new lanthanide (cerium, lanthanum and neodymium)
complex compounds, Journal of Trace Elements in Medicine and Biology. 18
(2005) 219–226. https://doi.org/10.1016/j.jtemb.2005.01.002.
[67] Kostova, I., G. Momekov, T. Tzanova, M. Karaivanova, Synthesis,
Characterization, and Cytotoxic Activity of New Lanthanum(III) Complexes of Bis Coumarins, Bioinorganic Chemistry and Applications. 2006 (2006) e25651.
https://doi.org/10.1155/BCA/2006/25651.
[68] Kostova, I., V.K. Rastogi, W. Kiefer, A. Kostovski, New Lanthanum (III) Complex
– Synthesis, Characterization, and Cytotoxic Activity, Archiv Der Pharmazie. 339
(2006) 598–607. https://doi.org/10.1002/ardp.200600077.
[69] Kostova, I., G. Momekov, Synthesis, characterization and cytotoxicity evaluation
of new cerium(III), lanthanum(III) and neodymium(III) complexes, Applied
Organometallic Chemistry. 21 (2007) 226–233. https://doi.org/10.1002/aoc.1205.
[70] Kostova, I., N. Trendafilova, G. Momekov, Theoretical, spectral characterization
and antineoplastic activity of new lanthanide complexes, Journal of Trace Elements
in Medicine and Biology. 22 (2008) 100–111. https://doi.org/10.1016/
j.jtemb.2007.10.005.
[71] Yang, Z.-Y., B.-D. Wang, Y.-H. Li, Study on DNA-binding properties and
cytotoxicity in L1210 of La(III) complex with PMBP-isonicotinoyl hydrazone,
Journal of Organometallic Chemistry. 691 (2006) 4159–4166.
https://doi.org/10.1016/j.jorganchem.2006.06.002.
[72] Hussain, A., S. Gadadhar, T.K. Goswami, A.A. Karande, A.R. Chakravarty,
Photoactivated DNA cleavage and anticancer activity of pyrenyl-terpyridine
lanthanide complexes, European Journal of Medicinal Chemistry. 50 (2012) 319–
331. https://doi.org/10.1016/j.ejmech.2012.02.011.
[73] Wang, Z.-M., H.-K. Lin, S.-R. Zhu, T.-F. Liu, Y.-T. Chen, Spectroscopy,
cytotoxicity and DNA-binding of the lanthanum(III) complex of an l-valine
derivative of 1,10-phenanthroline, Journal of Inorganic Biochemistry. 89 (2002)
97–106. https://doi.org/10.1016/S0162-0134(01)00395-6.
[74] Biersack, B., R. Diestel, C. Jagusch, F. Sasse, R. Schobert, Metal complexes of
natural melophlins and their cytotoxic and antibiotic activities, Journal of Inorganic
Biochemistry. 103 (2009) 72–76. https://doi.org/10.1016/j.
jinorgbio.2008.09.005.
[75] Durgo, K., I. Halec, I. Šola, J. Franekić, Genotoxic effect of quercetin and
lanthanum complex on human cervical cancer cells, Archives for Occupational
Hygiene and Toxicology. 62 (2011) 221–226. https://doi.org/10.2478/10004-1254-
62-2011-2122.
[76] Heffeter, P., M.A. Jakupec, W. Körner, S. Wild, N.G. von Keyserlingk, L. Elbling,
H. Zorbas, A. Korynevska, S. Knasmüller, H. Sutterlüty, M. Micksche, B.K.
Keppler, W. Berger, Anticancer activity of the lanthanum compound [tris(1,10-
phenanthroline)lanthanum(III)]trithiocyanate (KP772; FFC24), Biochemical
Pharmacology. 71 (2006) 426–440. https://doi.org/10.1016/j.bcp.
2005.11.009.
[77] Shahraki, S., F. Shiri, M. Heidari Majd, S. Dahmardeh, Anti-cancer study and whey
protein complexation of new lanthanum(III) complex with the aim of achieving
bioactive anticancer metal-based drugs, Journal of Biomolecular Structure and
Dynamics. 37 (2019) 2072–2085. https://doi.org/10.1080/
07391102.2018.1476266.
[78] Abo El-Maali, N., A.Y. Wahman, A.A.M. Aly, A.Y. Nassar, D.M. Sayed,
Anticancer activity of lanthanum (III) and europium (III) 5-fluorouracil complexes
on Caco-2 cell line, Applied Organometallic Chemistry. 34 (2020) e5594.
https://doi.org/10.1002/aoc.5594.
[79] Wang, B., Z.-Y. Yang, P. Crewdson, D. Wang, Synthesis, crystal structure and
DNA-binding studies of the Ln(III) complex with 6-hydroxychromone-3-
carbaldehyde benzoyl hydrazone, Journal of Inorganic Biochemistry. 101 (2007)
1492–1504. https://doi.org/10.1016/j.jinorgbio.2007.04.007.
[80] Zhou, J., L. Wang, J. Wang, N. Tang, Synthesis, characterization, antioxidative and
antitumor activities of solid quercetin rare earth(III) complexes, Journal of
Inorganic Biochemistry. 83 (2001) 41–48. https://doi.org/10.1016/S0162-
0134(00)00128-8.
[81] Hassan, S.S., E.F. Mohamed, Antimicrobial, antioxidant and antitumor activities of
Nano-Structure Eu (III) and La (III) complexes with nitrogen donor tridentate
ligands, Applied Organometallic Chemistry. 34 (2020) e5258. https://doi.org/10.
1002/aoc.5258.
[82] Gonca, S., S. Özdemi̇ r, A. Tekgul, C. Ünlü, K. Ocakoğlu, N. Di̇ zge, Synthesis and
characterization of perovskite type of La1-xBaxMnO3 nanoparticles with
investigation of biological activity, Advanced Powder Technology. 33 (2022).
https://doi.org/10.1016/j.apt.2021.10.038.
[83] Avaji, P.G., B.N. Reddy, S.A. Patil, P.S. Badami, Synthesis, spectral
characterization, biological and fluorescence studies of lanthanum(III) complexes
with 3-substituted-4-amino-5-hydrazino-1,2,4-triazole Schiff bases, Transition Met
Chem. 31 (2006) 842–848. https://doi.org/10.1007/s11243-006-0066-5.
[84] Avaji, P.G., S.A. Patil, P.S. Badami, Synthesis, spectral, thermal, solid state d.c.
electrical conductivity and biological studies of lanthanum(III) and thorium(IV)
complexes with thiocarbohydrazone, Transition Met Chem. 32 (2007) 379–386.
https://doi.org/10.1007/s11243-006-0178-y.
[85] El-Gamel, N.E.A. Thermal studies, structural characterization, and antimicrobial
evaluation of coordinated metal complexes containing salen moiety, Monatsh
Chem. 144 (2013) 1627–1634. https://doi.org/10.1007/s00706-013-1049-9.
[86] Andotra, S., N. Kalgotra, S.K. Pandey, Syntheses, Characterization, Thermal, and
Antimicrobial Studies of Lanthanum(III) Tolyl/Benzyldithiocarbonates,
Bioinorganic Chemistry and Applications. 2014 (2014) e780631. https://doi.
org/10.1155/2014/780631.
[87] Köse, M., G. Ceyhan, E. Atci, V. McKee, M. Tümer, Synthesis, structural
characterization and photoluminescence properties of a novel La(III) complex,
Journal of Molecular Structure. 1088 (2015) 129–137. https://doi.org/10.1016/j.
molstruc.2015.02.023.
[88] Alghool, S., H.F. Abd El-Halim, M.S. Abd El-sadek, I.S. Yahia, L.A. Wahab,
Synthesis, thermal characterization, and antimicrobial activity of lanthanum,
cerium, and thorium complexes of amino acid Schiff base ligand, J Therm Anal
Calorim. 112 (2013) 671–681. https://doi.org/10.1007/s10973-012-2628-4.
[89] Niroomand, S., M. Khorasani-Motlagh, M. Noroozifar, S. Jahani, A. Moodi,
Photochemical and DFT studies on DNA-binding ability and antibacterial activity
of lanthanum(III)-phenanthroline complex, Journal of Molecular Structure. 1130
(2017) 940–950. https://doi.org/10.1016/j.molstruc.2016.10.076.
[90] Patil, S.S., B.P. Langi, M.N. Gurav, D.K. Patil, Synthesis, Physical and Spectral
Investigations and Biological Studies of Mixed Ligand Lanthanum Complexes,
Annals of the Romanian Society for Cell Biology. (2021) 10559–10569.
[91] Köse, M., G. Ceyhan, E. Atci, V. McKee, M. Tümer, Synthesis, structural
characterization and photoluminescence properties of a novel La(III) complex,
Journal of Molecular Structure. 1088 (2015) 129–137. https://doi.org/10.1016/j.
molstruc.2015.02.023.
[92] Horrocks Jr., W.D., Schmidt, D.R. Sudnick, C. Kittrell, R.A. Bernheim, Laser induced lanthanide ion luminescence lifetime measurements by direct excitation of
metal ion levels. A new class of structural probe for calcium-binding proteins and
nucleic acids, ACS Publications. (2002). https://doi.org/10.1021/ja00449a079.
[93] Horrocks Jr., W.D., Sudnick D.R. Lanthanide ion probes of structure in biology.
Laser-induced luminescence decay constants provide a direct measure of the
number of metal-coordinated water molecules, ACS Publications. (2002).
https://doi.org/10.1021/ja00496a010.
[94] Bkouche-Waksman, I., J. Guilhem, C. Pascard, B. Alpha, R. Deschenaux, J.-M.
Lehn, Crystal Structures of the Lanthanum(III), Europium(III), and Terbium(III)
Cryptates of Tris(bipyridine) Macrobicyclic Ligands, Helvetica Chimica Acta. 74
(1991) 1163–1170. https://doi.org/10.1002/hlca.19910740603.
[95] Zhu, Y.-J., J.-X. Chen, W.-H. Zhang, Z.-G. Ren, Y. Zhang, J.-P. Lang, S.-W. Ng,
Syntheses, crystal structures and luminescent properties of two novel lanthanide/4-
pya complexes: [Ln(4-pya)3(H2O)2]2 (Ln = Eu, La; 4-pya=trans-4-
pyridylacrylate), Journal of Organometallic Chemistry. 690 (2005) 3479–3487.
https://doi.org/10.1016/j.jorganchem.2005.04.041.
[96] Xiong, D.-B., M.-R. Li, W. Liu, H.-H. Chen, X.-X. Yang, J.-T. Zhao, Synthesis,
structure and luminescence property of two lanthanum phosphite hydrates:
La2(H2O)x(HPO3)3 (x=1,2), Journal of Solid State Chemistry. 179 (2006) 2571–
2577. https://doi.org/10.1016/j.jssc.2006.04.035.
[97] Tang, K.-Z., J. Zhang, Y. Tang, W.-S. Liu, M.-Y. Tan, Y.-X. Sun, Preparation,
crystal structure and luminescent properties of the 3-D netlike supramolecular
lanthanide picrate complexes with 2,2′-[1,2-phenylenebis(oxy)]bis(N-benzylaceta mide), Inorganica Chimica Acta. 359 (2006) 1207–1214. https://doi.org/
10.1016/j.ica.2005.10.004.
[98] Dou, W., J.-N. Yao, W.-S. Liu, Y.-W. Wang, J.-R. Zheng, D.-Q. Wang, Crystal
structure and luminescent properties of new rare earth complexes with a flexible
Salen-type ligand, Inorganic Chemistry Communications. 10 (2007) 105–108.
https://doi.org/10.1016/j.inoche.2006.09.017.
[99] Galyametdinov, Y.G., A.A. Knyazev, V.I. Dzhabarov, T. Cardinaels, K. Driesen,
C. Görller-Walrand, K. Binnemans, Polarized Luminescence from Aligned
Samples of Nematogenic Lanthanide Complexes, Advanced Materials. 20 (2008)
252–257. https://doi.org/10.1002/adma.200701714.
[100] Regulacio, M.D., M.H. Pablico, J.A. Vasquez, P.N. Myers, S. Gentry, M. Prushan,
S.-W. Tam-Chang, S.L. Stoll, Luminescence of Ln(III) Dithiocarbamate
Complexes (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy), Inorg. Chem. 47 (2008) 1512–1523.
https://doi.org/10.1021/ic701974q.
[101] Li, Y., Y. Zhao, Intramolecular Energy Transfer and Co-luminescence Effect in
Rare Earth Ions (La, Y, Gd and Tb) Doped with Eu3+ β-diketone Complexes, J
Fluoresc. 19 (2009) 641–647. https://doi.org/10.1007/s10895-008-0456-5.
[102] Roof, I.P., T.-C. Jagau, W.G. Zeier, M.D. Smith, H.-C. zur Loye, Crystal Growth
of a New Series of Complex Niobates, LnKNaNbO5 (Ln = La, Pr, Nd, Sm, Eu, Gd,
and Tb): Structural Properties and Photoluminescence, Chem. Mater. 21 (2009)
1955–1961. https://doi.org/10.1021/cm9003245.
[103] Granadeiro, C.M., R.A.S. Ferreira, P.C.R. Soares-Santos, L.D. Carlos, H.I.S.
Nogueira, Lanthanopolyoxometalates as Building Blocks for Multiwavelength
Photoluminescent Organic–Inorganic Hybrid Materials, European Journal of
Inorganic Chemistry. 2009 (2009) 5088–5095. https://doi.org/10.1002/ejic.
200900615.
[104] Hu, M., H.-F. Li, J.-Y. Yao, Y. Gao, Z.-L. Liu, H.-Q. Su, Hydrothermal synthesis
and characterization of two 2-D lanthanide-2,2′-bipyridine-3,3′-dicarboxylate
coordination polymers based on zigzag chains, Inorganica Chimica Acta. 363
(2010) 368–374. https://doi.org/10.1016/j.ica.2009.11.001.
[105] Chai, X.-C., Y.-Q. Sun, R. Lei, Y.-P. Chen, S. Zhang, Y.-N. Cao, H.-H. Zhang, A
Series of Lanthanide Frameworks with a Flexible Ligand, N,N′-Diacetic Acid
Imidazolium, in Different Coordination Modes, Crystal Growth & Design. 10
(2010) 658–668. https://doi.org/10.1021/cg901075r.
[106] Yao, M., Y. Li, M. Hossu, A.G. Joly, Z. Liu, Z. Liu, W. Chen, Luminescence of
Lanthanide–Dimethyl Sulfoxide Compound Solutions, J. Phys. Chem. B. 115
(2011) 9352–9359. https://doi.org/10.1021/jp202350p.
[107] Wang, W., Y. Huang, T. Li, G.-N. Lu, Y. Yang, N. Tang, H.-B. Song, Dinuclear
rare-earth picrate complexes based on a multidentate amide ligand: syntheses,
crystal structures, and luminescence properties, Journal of Coordination Chemistry.
65 (2012) 4041–4053. https://doi.org/10.1080/00958972.2012.731503.
[108] Bennett, S.D., B.A. Core, M.P. Blake, S.J.A. Pope, P. Mountford, B.D. Ward,
Chiral lanthanide complexes: coordination chemistry, spectroscopy, and catalysis,
Dalton Trans. 43 (2014) 5871–5885. https://doi.org/10.1039/C4DT00114A.
[109] Yin, X., J.-N. Tang, G.-H. Pan, W.-M. Tian, W.-J. Xu, Z.-J. Huang, Hydrothermal
Synthesis, Structure, Properties of a Novel Supramolecular Complex:
[LaCd(bpy)4(NO3)5], Molecular Crystals and Liquid Crystals. 606 (2015) 208–
215. https://doi.org/10.1080/15421406.2014.905318.
[110] Nedilko, S.G., O. Chukova, V. Chornii, V. Degoda, K. Bychkov, K. Terebilenko,
M. Slobodyanik, Luminescence properties of the new complex La,BiVO4:Mo,Eu
compounds as materials for down-shifting of VUV–UV radiation, Radiation
Measurements. 90 (2016) 282–286. https://doi.org/10.1016/j.radmeas.2016.02.027.
[111] Allendorf, M.D., C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Luminescent metal–
organic frameworks, Chem. Soc. Rev. 38 (2009) 1330–1352. https://doi.org/
10.1039/B802352M.
[112] Amoroso, A.J., S.J.A. Pope, Using lanthanide ions in molecular bioimaging, Chem.
Soc. Rev. 44 (2015) 4723–4742. https://doi.org/10.1039/C4CS00293H.
[113] Wang, W., Y. Huang, T. Li, G.-N. Lu, Y. Yang, N. Tang, H.-B. Song, Dinuclear
rare-earth picrate complexes based on a multidentate amide ligand: syntheses,
crystal structures, and luminescence properties, Journal of Coordination Chemistry.
65 (2012) 4041–4053. https://doi.org/10.1080/00958972.2012.731503.
We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!