Chapter 1. Introduction to the Geology and Geochemistry of Sedimentary Iron Sulfide Minerals


Daniel David Gregory, PhD
Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada

Part of the book: Pyrite and Pyrrhotite: Managing the Risks in Construction Materials and New Applications


Pyrite is a common constituent of many different rock types, including sedimentary rocks. It forms predominantly in carbonaceous sedimentary rocks, though it can be found in most different types of sedimentary rock under certain circumstances. Pyrite forms via two main mechanisms, either with Fe2+ reacting with HS- or polysulfide species; which predominates depends on the pH of the depositional setting. Furthermore, pyrite can form at several different points in the history of the sediments, ranging from formation within the water column through early diagenesis (both of these will likely have S provided by bacterial sulfate reduction) to late diagenesis (S provided largely by thermochemical sulfate reduction) to subsequent overprinting by hydrothermal or metamorphic fluids. Occasionally, in low pH environments, the pyrite polymorph marcasite is found with or instead of pyrite and in rocks that have experienced upper greenschist or higher grade metamorphism, either of these FeS2 species can be altered to pyrrhotite. When exposed to the atmosphere or oxygenated groundwater, any of these species can oxidize to Fe (hydr)oxides and sulfuric acid which can cause swelling of the rock, dissolution of carbonate matrix of the rock, and release of environmentally sensitive elements (e.g., As). Pyrite texture, which affects surface area, can affect the rate of pyrite oxidation. Further, trace element components and how those trace elements are held in pyrite can affect the oxidation rate of pyrite, because some trace elements may stabilize the pyrite structure preventing oxidation while others can destabilize it increasing oxidation rate. Furthermore, pyrite oxidation rate can be increased (order of magnitude scale) by bacterial sulfate reduction.

Keywords: sedimentary pyrite, trace elements, oxidation


Abraitis, P., Pattrick, R. and Vaughan, D. (2004). Variations in the compositional, textural and electrical
properties of natural pyrite: a review. International Journal of Mineral Processing, 74: 41-59.
Achterberg, E. P., Holland, T. W., Bowie, A. R., Mantoura, R. F. C. and Worsfold, P. J. (2001). Determination
of iron in seawater. Analytica Chimica Acta, 442: 1-14.
Atienza, N. M. (2020). Trace element mapping and incorporation in pyrite framboids using atom probe
tomography. Unpublished MSc thesis, University of Toronto, 70.
Berner, Z., Pujol, F., Neumann, T., Kramar, U., Stüben, D., Racki, G. and Simon, R. (2006). Contrasting trace
element composition of diagenetic and syngenetic pyrites: implications for the depositional environment.
Proceedings Geophysical Research Abstracts, 8: 8281.
Berner, Z. A., Puchelt, H., Nöltner, T. and Kramar, U. T. Z. (2013). Pyrite geochemistry in the Toarcian
Posidonia Shale of south-west Germany: Evidence for contrasting trace-element patterns of diagenetic
and syngenetic pyrites. Sedimentology, 60(2): 548-573.
Blake, R. and Johnson, B. D. (2000). Phylogenetic and biochemical diversity among acidophilic bacteria that
respire on iron. Environmental Microbe‐Metal Interactions, 53-78, ASM Press, Washington, DC.
Bonev, I., Reiche, M. and Marinov, M. (1985). Morphology, perfection and growth of natural pyrite whiskers
and thin platelets. Physics and Chemistry of Minerals, 12: 223-232.
Canfield, D. E., Thamdrup, B. and Fleischer, S. (1998). Isotope fractionation and sulfur metabolism by pure
and enrichment cultures of elemental sulfur‐disproportionating bacteria. Limnology and Oceanography,
43(2): 253-264.
Chappaz, A., Lyons, T. W., Gregory, D. D., Reinhard, C. T., Gill, B. C., Li, C. and Large, R. R. (2014). Does
pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochimicaet
Cosmochimica Acta, 126: 112-122.
Connolly, J. and Cesare, B. (1993). C‐O‐H‐S fluid composition and oxygen fugacity in graphitic metapelites.
Journal of Metamorphic Geology, 11: 379-388.
Cook, N. J. and Chryssoulis, S. L. (1990). Concentrations of invisible gold in the common sulfides. The
Canadian Mineralogist, 28: 1-16.
Deditius, A. P., Utsunomiya, S., Ewing, R. C. and Kesler, S. E. (2009). Nanoscale “liquid” inclusions of As Fe-S in arsenian pyrite. American Mineralogist, 94: 391-394.
Deditius, A. P., Utsunomiya, S., Renock, D., Ewing, R. C., Ramana, C. V., Becker, U. and Kesler, S. E. (2008).
A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance.
Geochimica et Cosmochimica Acta, 72: 2919-2933.
Fischer, A., Saunders, J., Speetjens, S., Marks, J., Redwine, J., Rogers, S. R., Ojeda, A. S., Rahman, M. M.,
Billor, Z. M. and Lee, M.-K. (2021). Long-Term Arsenic Sequestration in Biogenic Pyrite from
Contaminated Groundwater: Insights from Field and Laboratory Studies. Minerals, 11: 537.
Fleet, M. E. and Munin, A. H. (1997). Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin
Trend gold deposits and laboratory synthesis. American Mineralogist, 82: 182-193.
Genna, D. and Gaboury, D. (2015). Deciphering the Hydrothermal Evolution of a VMS System by LA-ICP MS Using Trace Elements in Pyrite: An Example from the Bracemac-McLeod Deposits, Abitibi, Canada,
and Implications for Exploration. Economic Geology, 110(8): 2087-2108.
Gregory, D., Meffre, S. and Large, R. (2014). Comparison of metal enrichment in pyrite framboids from a
metal-enriched and metal-poor estuary. American Mineralogist, 99(4): 633-644.
Gregory, D., Mukherjee, I., Olson, S. L., Large, R. R., Danyushevsky, L. V., Stepanov, A. S., Avila, J. N.,
Cliff, J., Ireland, T. R. and Raiswell, R. (2019a). The formation mechanisms of sedimentary pyrite nodules
determined by trace element and sulfur isotope microanalysis. Geochimica et Cosmochimica Acta, 259:53-68.
Gregory, D. D., Cracknell, M. J., Large, R. R., McGoldrick, P., Kuhn, S., Maslennikov, V. V., Baker, M. J.,
Fox, N., Belousov, I. and Figueroa, M. C. (2019b). Distinguishing Ore Deposit Type and Barren
Sedimentary Pyrite Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Trace Element
Data and Statistical Analysis of Large Data Sets. Economic Geology, 114: 771-786.
Gregory, D. D., Large, R. R., Halpin, J. A., Baturina, E. L., Lyons, T. W., Wu, S., Danyushevsky, L., Sack, P.
J., Chappaz, A. and Maslennikov, V. V. (2015). Trace Element Content of Sedimentary Pyrite in Black
Shales. Economic Geology, 110(6): 1389-1410.
Gregory, D. D., Lyons, T. W., Large, R. R., Jiang, G., Stepanov, A. S., Diamond, C., Figueroa, M. and Olin,
P. (2017). Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean
chemistry: An example from the Neoproterozoic Doushantuo Formation, China. Geochimica et
Cosmochimica Acta, 216: 201-220.
Gregory, D. D., Lyons, T. W., Large, R. R. and Stepanov, A. (2022a). Ground-truthing the pyrite trace element
proxy in modern euxinic settings. American Mineralogist, 848-859.
Gregory, D. D., Kovarik, L., Taylor, S. D., Perea, D. E., Owens, J. D., Atienza, N. M. and Lyons, T. W. (2022b).
Nano-scale trace element zoning in pyrite framboids and implications for paleoproxy applications.
Geology, 50: 736-740.
Helz, G. R. and Vorlicek, T. P. (2019). Precipitation of molybdenum from euxinic waters and the role of organic
matter. Chemical Geology, 509: 178-193.
Huerta-Diaz, M. A. and Morse, J. W. (1992). Pyritization of trace metals in anoxic marine sediments.
Geochimica et Cosmochimica Acta, 56(7): 2681-2702.
Janzen, M. P., Nicholson, R. V., and Scharer, J. M. (2000). Pyrrhotite reaction kinetics: reaction rates for
oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochimica et Cosmochimica Acta,
64(9): 1511-1522.
Johnson, A. C., Romaniello, S. J., Reinhard, C. T., Gregory, D. D., Garcia-Robledo, E., Revsbech, N. P.,
Canfield, D. E., Lyons, T. W. and Anbar, A. D. (2019). Experimental determination of pyrite and
molybdenite oxidation kinetics at nanomolar oxygen concentrations. Geochimica et Cosmochimica Acta,
249: 160-172.
Kwong, Y.-T. J. (1993). Prediction and prevention of acid rock drainage from a geological and mineralogical
perspective, Mend project, 66.
Large, R. R., Bull, S. W. and Maslennikov, V. V. (2011). A carbonaceous sedimentary source-rock model for
Carlin-type and orogenic gold deposits. Economic Geology, 106: 331-358.
Large, R. R., Halpin, J. A., Danyushevsky, L. V., Maslennikov, V. V., Bull, S. W., Long, J. A., Gregory, D.
D., Lounejeva, E., Lyons, T. W. and Sack, P. J. (2014). Trace element content of sedimentary pyrite as a
new proxy for deep-time ocean–atmosphere evolution. Earth and Planetary Science Letters, 389: 209-220.
Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R. and Danyushevsky, L. V. (2019).
Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54(4): 485-506.
Lowers, H. A., Breit, G. N., Foster, A. L., Whitney, J., Yount, J., Uddin, M. N. and Muneem, A. A. (2007).
Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochimica et
Cosmochimica Acta, 71(11): 2699-2717.
Marshall, C. D., Anglin, C. D., and Mumin, H. (2012). Ore Mineral Atlas. Geological Association of Canada,
Mineral Deposits Division, p. 122.
McKibben, M. A. and Barnes, H. L. (1986). Oxidation of pyrite in low temperature acidic solutions: Rate laws
and surface textures. Geochimica et Cosmochimica Acta, 50(7): 1509-1520.
Michel, D., Giuliani, G., Olivo, G. R. and Marini, O. J. (1994). As growth banding and the presence of Au in
pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments, Goias State, Brazil.
Economic Geology, 89: 193-200.
Morse, J. and Luther, G. (1999). Chemical influences on trace metal-sulfide interactions in anoxic sediments.
Geochimica et Cosmochimica Acta, 63(19-20): 3373-3378.
Morse, J. W. and Arakaki, T. (1993). Adsorption and coprecipitation of divalent metals with mackinawite
(FeS). Geochimica et Cosmochimica Acta, 57(15): 3635-3640.
Napieralski, S. A., Fang, Y., Marcon, V., Forsythe, B., Brantley, S. L., Xu, H. and Roden, E. E. (2021).
Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic
considerations and potential mechanisms. Geobiology, 20(2): 271-291.
Ohfuji, H. and Rickard, D. (2005). Experimental syntheses of framboids—a review. Earth-Science Reviews,
71(3-4): 147-170.
Olson, G. J. (1991). Rate of pyrite bioleaching by Thiobacillus ferrooxidans: results of an interlaboratory
comparison. Applied and Environmental Microbiology, 57(3): 642-644.
Percak‐Dennett, E., He, S., Converse, B., Konishi, H., Xu, H., Corcoran, A., Noguera, D., Chan, C.,
Bhattacharyya, A. and Borch, T. (2017). Microbial acceleration of aerobic pyrite oxidation at
circumneutral pH. Geobiology, 15(5): 690-703.
Picard, A., Gartman, A., Clarke, D. R. and Girguis, P. R. (2018). Sulfate-reducing bacteria influence the
nucleation and growth of mackinawite and greigite. Geochimica et Cosmochimica Acta, 220: 367-384.
Poulton, S. W. and Canfield, D. E. (2011). Ferruginous conditions: a dominant feature of the ocean through
Earth’s history. Elements, 7(2): 107-112.
Qian, G., Brugger, J., Testemale, D., Skinner, W. and Pring, A. (2013). Formation of As(II)-pyrite during
experimental replacement of magnetite under hydrothermal conditions. Geochimica et Cosmochimica
Acta, 100: 1-10.
Reich, M. and Becker, U. (2006). First-principles calculations of the thermodynamic mixing properties of
arsenic incorporation into pyrite and marcasite. Chemical Geology, 225: 278-290.
Rickard, D. (2012). Sulfidic Sediments and Sedimentary Rocks, Elsevier, 876.
Rickard, D. (2015). Pyrite: A Natural History of Fool’s Gold. Oxford University Press, 320.
Rickard, D. (2019a). How long does it take a pyrite framboid to form? Earth and Planetary Science Letters, 513: 64-68.
Rickard, D. (2019b). Sedimentary pyrite framboid size-frequency distributions: A meta-analysis.
Palaeogeography, Palaeoclimatology, Palaeoecology, 522(5): 62-75.
Rickard, D. (2021). Framboids. Oxford University Press, 360.
Rickard, D., Grimes, S., Butler, I., Oldroyd, A. and Davies, K. L. (2007). Botanical constraints on pyrite
formation. Chemical Geology, 236(3-4): 228-246.
Rickard, D. and Luther, G. W. (1997). Kinetics of pyrite formation by the H2S oxidation of iron (II)
monosulfide in aqueous solutions between 25 and 125° C: The mechanism. Geochimica et Cosmochimica
Acta, 61(1): 135-147.
Rickard, D. and Morse, J. W. (2005). Acid volatile sulfide (AVS). Marine chemistry, 97(3-4): 141-197.
Rickard, D. T. (1975). Kinetics and mechanism of pyrite formation at low temperatures. American Journal of
Science, 275: 636-652.
Rinker, M., Nesbitt, H. and Pratt, A. (1997). Marcasite oxidation in low-temperature acidic (pH 3.0) solutions:
Mechanism and rate laws. American Mineralogist, 82: 900-912.
Roberts, F. I. (1982). Trace element chemistry of pyrite: A useful guide to the occurrence of sulfide base metal
mineralization. Journal of Geochemical Exploration, 17(1): 49-62.
Schieber, J. (2002). The role of an organic slime matrix in the formation of pyritized burrow trails and pyrite
concretions. Palaios, 17: 104-109.
Schoonen, M. and Barnes, H. (1991). Reactions forming pyrite and marcasite from solution: II. Via FeS
precursors below 100 C. Geochimica et Cosmochimica Acta, 55(6): 1505-1514.
Slotznick, S. P., Eiler, J. M. and Fischer, W. W. (2018). The effects of metamorphism on iron mineralogy and
the iron speciation redox proxy. Geochimica et Cosmochimica Acta, 224: 96-115.
Spry, P. G. and Gedlinski, B. L. (1987). Tables for the determination of common opaque minerals, Economic
Geology Pub, 1-52.
Sykora, S., Cooke, D. R., Meffre, S., Stephanov, A. S., Gardner, K., Scott, R., Selley, D. and Harris, A. C.
(2018). Evolution of pyrite trace element compositions from porphyry-style and epithermal conditions at
the Lihir gold deposit: implications for ore genesis and mineral processing. Economic Geology, 113: 193-208.
Thomas, H. V., Large, R. R., Bull, S. W., Maslennikov, V., Berry, R. F., Fraser, R., Froud, S. and Moye, R.
(2011). Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at
Bendigo gold mine, Australia: insights for ore genesis. Economic Geology, 106(1): 1-31.
Tomkins, A. G. (2010). Windows of metamorphic sulfur liberation in the crust: implications for gold deposit
genesis. Geochimica et Cosmochimica Acta, 74(11): 3246-3259.
Tribovillard, N., Algeo, T. J., Lyons, T. and Riboulleau, A. (2006). Trace metals as paleoredox and
paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32.
Vorlicek, T. P., Helz, G. R., Chappaz, A., Vue, P., Vezina, A. and Hunter, W. (2018). Molybdenum burial
mechanism in sulfidic sediments: iron-sulfide pathway. ACS Earth and Space Chemistry, 2(6): 565-576.
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. B., Kong, C., Liu, A. G., Matthews, J. J. and Brasier, M. D.
(2015). Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology, 43(1): 27-30.
Wilkin, R., Barnes, H. and Brantley, S. (1996). The size distribution of framboidal pyrite in modern sediments:
An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912.
Williamson, M. A. and Rimstidt, J. D. (1994). The kinetics and electrochemical rate-determining step of
aqueous pyrite oxidation. Geochimica et Cosmochimica Acta, 58(24): 5443-5454


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!