Chapter 1. Chromophores with Aminostyryl Quinoxaline Moiety for Photonic and Optoelectronic Applications: Synthesis, Linear and Nonlinear Optical Properties


A. Kalinin, O. Fominykh and M. Balakina
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation

Part of the book: Advances in Chemistry Research. Volume 77


Original and literature data on the synthesis, photophysical, and nonlinear optical (NLO) characteristics of aminostyryl quinoxaline-based chromophores with quinoxaline moiety acting either as acceptor (D-π-A) or core of the π-electron bridge (D-π-A-π-D or D-π-A-π-A¢ chromophores, where A = quinoxaline) are summarized. The results of experimental studies and quantum chemical calculations of chromophores molecular characteristics (absorption/emission maxima, solvatochromism, dipole moments, first hyperpolarizability values) are considered. Dyes D-π-A and D-π-A-π-D exhibit luminescent properties providing the development of various sensors (for pH, metal ions), dye-sensitized solar cells (DSSC) and OLED devices on their basis. They can manifest halochromism, mechanofluorochromism, as well as the ability of gelation. Derivaties of D-π-A showed diuretic, anticancer, antibacterial, and antifungal activity; they can also be used as new fluorescent probes for amyloid-b fibrils. D-π-A-π-A¢ dyes with D-vinylene and A¢-vinylene terminal fragments, attached to 5 and 8 sites of quinoxaline core, were used for DSSC. D-π-A-π-A¢ dyes with D-vinylene and A¢-vinylene terminal fragments, attached to 7 and 3 sites of quinoxalin(on)e core, demonstrate no luminescence but manifest significant nonlinear-optical properties.

Keywords: quinoxaline, chromophore, photophysical characteristics, luminescence, DSSC, nonlinear optical properties, second harmonics generation


Achelle, S., Baudequin, C., Plé, N. (2013). Luminescent materials incorporating pyrazine
or quinoxaline moieties. Dyes and Pigments, 98, 575-600.
Achelle, S., Barsella, A., Baudequin, C., Caro, B., Robin-le Guen ̧ F. (2012). Synthesis and
Photophysical Investigation of a Series of Push−Pull Arylvinyldiazines. Journal of
Organic Chemistry, 77, 4087−4096.
Akhmadeev, B.S., Gerasimova, T.P., Gilfanova, A.R., Katsyuba, S.A., Islamova, L.N.,
Fazleeva, G.M., Kalinin, A.A., Daminova, A.G., Fedosimova, S.V., Amerhanova,
S.K., Voloshina, A.D., Tanysheva, E.G., Sinyashin, O.G., Mustafina, A.R. (2022).
Temperature-sensitive emission of dialkylaminostyrylhetarene dyes and their
incorporation into phospholipid aggregates: Applicability for thermal sensing and
cellular uptake behavior. Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, 268, 120647.
Badr, M.Z.A., El-Naggar, G.M., El-Sherief, H.A.H., El-Sayed Abdel-Rahman, A., Fouzy
Aly, M. (1983) Reaction of Quinoxaline Derivatives with Nucleophilic Reagents.
Bulletin of the Chemical Society of Japan, 56, 326-330.
Benzeid, H., Mothes, E., Essassi, E.M., Faller, P., Pratviel, G. (2012) A thienoquinoxaline
and a styryl-quinoxaline as new fluorescent probes for amyloid-b fibrils. Comptes
Rendus – Chimie, 15, 79–85.
Bijesh, S., Misra, R. (2018) Triphenylamine Functionalized Unsymmetrical Quinoxalines,
Asian Journal of Organic chemistry, 7, 1882–1892.
Black, C.B., Andrioletti, B., Try, A.C., Ruiperez, C., Sessler, J.L. (1999) Dipyrrolyl quinoxalines: efficient sensors for fluoride anion in organic solution. Journal of the
American Chemical Society, 121, 10438-10439.
Budnikova Yu.H., Dudkina Yu.B., Kalinin A.A., Balakina M.Yu. (2021) Considerations
on electrochemical behavior of NLO chromophores: Relation of redox properties and
NLO activity. Electrochemica Acta, 368, 137578.
Burganov, T.I., Katsyuba, S.A., Islamova, L.N., Fazleeva, G.M., Sharipova, S.M., Kalinin,
A.A., Monari, A., Assfeld, X. (2019) To what extent are the photophysical properties
of quinoxaline- and quinoxalinone-based chromophores predictable? Dyes and
Pigments, 170, 107580.
Burganov, T.I., Katsyuba, S.A., Sharipova, S.M., Kalinin, A.A., Monari, A., Assfeld, X.
(2018) Novel quinoxalinone-based push–pull chromophores with highly sensitive
emission andabsorption properties towards small structural modifications. Physical
Chemistry Chemical Physics, 20, 21515—21527.
Burganov, T.I., Katsyuba, S.A., Islamova, L.N., Fazleeva, G.M., Sharipova, S.M., Kalinin,
A.A., Dobrynin, A.B., Monari, A., Assfeld, X. (2020) Characterization of Conjugation
Effects in the Series of Quinoxaline-2-ones by Means of Vibrational Raman
Spectroscopy. Journal of Physical Chemistry A, 124, 3865−3875.
Burganov, T., Katsyuba, S., Monari, A., Kalinin, A., Sharipova, S., Assfeld, X. (2021)
Stimuli-responsive emission of quinoxalinone-based compounds. From experimental
findings to theoretical insight by means of multiscale computational spectroscopy
approaches. Dyes and Pigments, 184, 108797.
Caicedo, M., Echeverry, C.A., Guimaraes, R.R., Ortiz, A., Araki, K., Insuasty, B. (2017)
Microwave assisted synthesis of a series of charge-transfer photosensitizers having
quinoxaline-2(1H)-one as anchoring group onto TiO2 surface, Journal of Molecular
Structure, 1133, 384-391.
Cazaux, L., Faher, M., Picard, C., Tisnes, P. (1993) Styrylbenzodiazinones 2. Chromo- et
fluoroionophores derives du monoaza-15-couronne-5. Synthese et structure.
Canadian Journal of Chemistry, 71, 1236-1246.
Chang, D.W., Ko, S.-J., Kim, J.Y., Dai, L., Baek, J.-B. (2012) Multifunctional quinoxaline
containing small molecules with multiple electron-donating moieties: Solvatochromic
and optoelectronic properties. Synthetic Metals, 162, 1169-1176.
Chang, D.W., Lee, H.J., Kim, J.H., Park, S.Y., Park, S.-M., Dai, L., Baek, J.-B. (2011)
Novel Quinoxaline-Based Organic Sensitizers for Dye- Sensitized Solar Cells.
Organic Letters, 13, 3880–3883.
Dudkina, Y.B., Kalinin, A.A., Fazleeva, G.M., Sharipova, S.M., Islamova, L.N., Dobrynin,
A.B., Islamov, D.R., Levitskaya, A.I., Balakina, M.Yu., Budnikova, Y.H. (2021)
Composing NLO Chromophore as a Puzzle: Electrochemistry-based Approach to
Design and Effectiveness. ChemPhysChem., 22, 2313–2328.
Fazleeva, G.M., Islamova, L.N., Shaikhutdinova, G.R., Kalinin, A.A. (2019) Synthesis of
E,E-4-(6-(N-hydroxyethyl(N-ethyl)-aminostyryl quinoxalin-2-yl)vinyl)-2-dicyano methylene-3-cyano-2,5-dihydrofurans.
Synthetic Сommunications, 49, 3528–3535.
Fominykh, O.D., Kalinin, A.A., Sharipova, S.M., Sharipova, A.V., Burganov, T.I.,
Smirnov, M.A., Vakhonina, T.A., Levitskaya, A.I., Kadyrova, A.A., Ivanova, N.V.,
Khamatgalimov, A.R., Nizameev, I.R., Katsyuba, S.A., Balakina, M.Yu. (2018)
Composite materials containing chromophores with 3,7-(di)vinylquinoxalinone π electron
bridge doped into PMMA: Atomistic modeling and measurements of
quadratic nonlinear optical activity. Dyes and Pigments, 158, P. 131-141.
Fominykh, O.D., Kalinin, A.A., Sharipova, A.V., Levitskaya, A.I., Balakina, M.Yu. (2020)
The effect of various substituents in donor moiety on the aggregation of nonlinear optical
quinoxaline-based chromophores in composite polymer materials.
Computational Materials Science, 183, 109900.
Gedefaw, D., Prosa, M., Bolognesi, M., Seri, M., Andersson, M.R. (2017) Recent
Development of Quinoxaline Based Polymers/Small Molecules for Organic
Photovoltaics. Advanced Energy Materials, 1700575.
Gerasimova, T.P., Burganov, T.I., Katsyuba, S.A., Kalinin, A.A., Islamova, L.N., Fazleeva,
G.M., Ahmadeev, B.S., Mustafina, A.R., Monari, A., Assfeld, X., Sinyashin, O.G.
(2021) Halochromic luminescent quinoxalinones as a basis for pH-sensing in organic
and aqueous solutions. Dyes and Pigments, 186, 108958.
Gupta, Sh.,. Milton, M.D. (2021), Y-shaped novel AIEE active push-pull quinoxaline
derivatives displaying acidochromism and use towards white light emission by
controlled protonation. Dyes and Pigments, 195, 109690 .
Hagfeldt, A.G., Boschloo, L., Sun, L. Kloo, Pettersson, H. (2010) Dye-Sensitized Solar
Cells. Chemical Reviews, 11 0, 6595–6663.
Han, H., Liu, Y.R., Dong, C., Han, X. (2017) Novel ratio fluorescence probes for
selectively detecting zinc ion based on Y-type quinoxaline framework. Journal of
Luminescence, 183, 513-518.
Husain, A., Madhesia, D., Rashid, M., Ahmad, A., Khan, S.A. (2016) Synthesis and in vivo
diuretic activity of some new benzothiazole sulfonamides containing quinoxaline ring
system. Journal of Enzyme Inhibition and Medicinal Chemistry, 31, 1682–1689.
Islamova, L.N., Kalinin, A.A., Gaysin, A.I., Fazleeva, G.M., Shmelev, A.G., Sharipova,
S.M., Shalin, N.I., Mukhtarov, A.S., Vakhonina, T.A., Fominykh, O.D., Balakina,
M.Yu. (2022a) The effect of the additional phenyl moiety on the linear and quadratic
nonlinear optical properties of chromophores with vinyl-quinoxalinone-vinyl π bridge.
Journal of Photochemistry & Photobiology, A: Chemistry, 431, 114013.
Islamova, L.N., Fazleeva, G.M., Sharipova, S.M., Shustikov, A.A., Tanysheva, E.G.,
Kalinin, A.A. (2022b) Heck reaction in the synthesis of D-p-A chromophores: The
effect of donor and acceptor on the ratio of 1,2- trans- and 1,1-isomer olefins. Synthetic
communications, 52, 554–563.
Jang, C.K., Lee, Y.H., Han, S.Y., Jaung, J. (2008) The synthesis and optical
characterization of quinoxalines bearing 2,2’:6’,2’’-terpyridine. Dyes and Pigments,
79, 101-104.
Jang, C.-K., Jaung, J. (2009) The synthesis and optical properties of quinoxalines bearing
2,2’:6’,2’’-terpyridine. Dyes and Pigments, 80, 168–173.
Jaung, J.-Y. (2006) Synthesis and halochromism of new quinoxaline fluorescent dyes. Dyes
and Pigments, 71, 245-250.
Jung, C.Y., Song C.J., Yao, W., Park, J.M., Hyun, I.H., Seong, D.H., Jaung, J.Y. (2015)
Synthesis and performance of new quinoxaline-based dyes for dye sensitized solar
cell. Dyes and Pigments, 121, 204-210.
Kalinin, A.A., Sharipova, S.M., Burganov, T.I., Levitskaya, A.I., Fominykh, O.D.,
Vakhonina, T.A., Ivanova, N.V., Khamatgalimov, A.R., Katsyuba, S.A., Balakina,
M.Yu. (2019) Large nonlinear optical activity of chromophores with
divinylquinoxaline conjugated π-bridge. Journal of Photochemistry and Photobio logy A: Chemistry A., 370, 58–66.
Kalinin, A.A., Sharipova, S.M., Burganov, T.I., Dudkina, Yu.B., Khamatgalimov, A.R.,
Katsyuba, S.A., Budnikova, Yu.H., Balakina, M.Yu. (2017) Push-pull isomeric
chromophores with vinyl- and divinylquinoxaline-2-one units as pi-electron bridge:
Synthesis, photophysical, thermal and electro-chemical properties. Dyes and
Pigments, 146, 82-91.
Kalinin, A.A., Sharipova, S.M., Burganov, T.I., Levitskaya A.I., Dudkina, Y.B.,
Khamatgalimov, A.R., Katsyuba, S.A., Budnikova, Yu.H., Balakina, M.Yu. (2018)
High thermally stable D–π–A chromophores with quinoxaline moieties in the
conjugated bridge: Synthesis, DFT calculations and physical properties. Dyes and
Pigments, 156, 175–184.
Kalinin, A.A., Islamova, L.N., Shmelev, A.G., Fazleeva, G.M., Fominykh, O.D., Dudkina,
Y.B., Vakhonina, T.A., Levitskaya, A.I., Sharipova, A.V., Mukhtarov, A.S.,
Khamatgalimov, A.R., Nizameev, I.R., Budnikova, Y.H., Balakina, M.Y. (2021a) D π-A chromophores
with a quinoxaline core in the π-bridge and bulky aryl groups in
the acceptor: Synthesis, properties, and femtosecond nonlinear optical activity of the
chromophore/PMMA guest-host materials. Dyes and Pigments, 184, 108801.
Kalinin, A.A., Sharipova, S.M., Levitskaya, A.I., Dudkina, Y.B., Burganov, T.I.,
Fominykh, O.D., Katsyuba, S.A., Budnikova, Y.H., Balakina, M.Yu. (2021b) D-π-A’-
π-A chromophores with quinoxaline core in the π-electron bridge and charged
heterocyclic acceptor moiety: Synthesis, DFT calculations, photophysical and electro chemical properties.
Journal of Photochemistry and Photobiology A: Chemistry A.,
407, 113042.
Kalinin, A.A., Sharipova, S.M., Islamova, L.N., Fazleeva, G.M., Busyurova, D.N.,
Sharipova, A.V., Fominykh, O.D., Balakina, M. Yu. (2022) Chromophores with
quinoxaline core in π-bridge and aniline or carbazole donor moiety: synthesis and
comparison of their linear and nonlinear optical properties. Russian Chemical Bulletin,
71, 1009—1018.
Kr Sain, D., Thadhaney, B., Joshi, A., Hussain, N., Talesara, G.L. (2010) Synthesis,
characterization and biological evaluation of some heterocyclic compounds containing
ethoxyphthalimide moiety via key intermediate 6-chloro 1,3 benzothiazole 2-amine.
Indian Journal of Chemistry, 49B, 818-825
Levitskaya, А.I., Kalinin, A.A., Fominykh, O.D., Balakina, M.Yu. (2015) Theoretical
predictions of nonlinear optical characteristics of novel chromophores with
quinoxalinone moieties. Computational Theoretical Chemistry, 1074, 91-100.
Levitskaya, А.I., Kalinin, A.A., Fominykh, O.D., Balakina, M.Yu. (2017) The effect of
rotational isomerism on the first hyperpolarizability of chromophores with divinyl
quinoxaline conjugated bridge. Chemical Physics Letters, 681, 16-21.
Li, K. Xue, P., Shen, Y., Liu, J. (2018) Ultrasound- and protonation-induced gelation of a
carbazole-substituted divinylquinoxaline derivative with short alkyl chain. Dyes and
Pigments, 151, 279-286.
Li, S.-R., Lee, C.-P., Kuo, H.-T., Ho, K.-C., Sun, S.-S. (2012) High-Performance Dipolar
Organic Dyes with an Electron-Deficient Diphenylquinoxaline Moiety in the p Conjugation
Framework for Dye-Sensitized Solar Cells. Chemistry—A European
Journal, 18, 12085-12095.
Liao, C.-W., Rao, R.M., Sun, S.-S. (2015) Structural diversity of new solid-state
luminophores based on quinoxaline-β-ketoiminate boron difluoride complexes with
remarkable fluorescence switching properties. Chemical Communications, 51, 2656-2659.
Liu, M., Gao, Y., Zhang, Y., Liu, Z., Zhao, L. (2017) Quinoxaline-based conjugated
polymers for polymer solar cells. Polymer Chemistry, 8, 4613-4636.
Mahajan, S., Slathia, N., Nuthakki, V.K., Bharate, S.B., Kapoor, K.K. (2020)
Malononitrile-activated synthesis and anticholinesterase activity of styrylquinoxalin 2(1H)- ones, RSC Advances, 10, 15966–15975.
Mamedov, V.A., Kalinin, A.A., Samigullina, А.I., Mironova, E.V., Krivolapov, D.B.,
Gubaidullin, A.T., Rizvanov, I. Kh. (2013a) Iodine-sodium acetate (I2-NaOAc)
mediated oxidative dimerization of indolizines: An efficient method for the synthesis
of biindolizines. Tetrahedron Letters, 54, 3348-3352.
Mamedov, V.A., Kalinin, A.A., Gubaidullin, A.T., Katsuba, S.A., Syakaev, V.V.,
Rizvanov, I.K., Latypov, Sh.K. (2013b) Efficient synthesis and structure peculiarity
of macrocycles with bi-indolizinylquinoxalinone moieties. Tetrahedron, 69, 10675-10687.
Mamedov, V.A., Kalinin, A.A., Yanilkin, V.V., Gubaidullin, A.T., Latypov, Sh.K.,
Balandina, A.A., Isaikina, O.G., Toropchina, A.V., Nastapova, N.V., Iglamova, N.A.,
Litvinov, I.A. (2005) 3-Indolizin-2-ylquinoxalines and the derived monopodands.
Russian Chemical Bulletin, 54, 2616-2625.
Mashraqui, S.H., Mestri, R., Chilekar, A., Upadhyay, J., Smitra, B. (2017) Bipolar
styrylquinozolinone chromophores: Synthesis, optical and electrochemical properties.
Indian Journal of Chemistry, 56B, 1070-1074.
Montana, M., Mathias, F., Terme, T., Vanelle, P. (2019) Antitumoral activity of
quinoxaline derivatives: A systematic review. European Journal of Medicinal
Chemistry, 163, 136-147.
Moshkina, T.N., Nosova, E.V., Lipunova, G.N., Valova, M.S., Charushin, V.N. (2018)
New 2,3‐Bis(5‐arylthiophen‐2‐yl)quinoxaline Derivatives: Synthesis and
Photophysical Properties. Asian Journal of Organic chemistry, 7, 1080-1084.
Noolvi, M.N., Patel, H.M., Bhardwaj, V., Chauhan, A. (2011) Synthesis and in vitro
antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for
anticancer agent. European Journal of Medicinal Chemistry, 46, 2327-2346.
E.V.Nosova, S.Achelle, G.N.Lipunova, V.N.Charushin, O.N.Chupakhin. (2019)
Functionalized Benzazines as Luminescent Materials and Components for
Optoelectronics. Russian Chemical Reviews, 88, 1128- 1178.
Park, J.M., Jung, C.Y., Wang, Y., Choi, H.D., Park, S.J., Ou, P., Jang, W.-D., Jaung, J.Y.
(2019) Effect of regioisomeric substitution patterns on the performance of
quinoxaline-based dye-sensitized solar cells. Electrochimica Acta, 298, 650-666.
Patel, H.M., Bhardwaj, V., Sharma, P., Noolvi, M.N., Lohan, S., Bansal, S., Sharma, A.
(2019) Quinoxaline-PABA bipartite hybrid derivatization approach: Design and
search for antimicrobial agents. Journal of Molecular Structure, 1184, 562-568.
Reddy, M.R., Han, S.H., Lee, J.Y., Seo, S.Y. (2018) Synthesis and characterization of
quinoxaline derivative for high performance phosphorescent organic light-emitting
diodes. Dyes and Pigments, 153, 132-136.
Sessler, J.L., Maeda, H., Mizuno, T., Lynch, V.M., Furuta, H. (2002) Quinoxaline-Bridged
Porphyrinoids. Journal of the American Chemical Society., 124, 13474-13479.
Sharipova, S.M., Gilmutdinova, A.A., Krivolapov, D.B., Khisametdinova, Z.R., Kataeva,
O.N., Kalinin, A.A. (2017) Synthesis of isomeric (E)-[4-(dimethylamino)phenyl]
vinylquinoxalines precursors for a new class of nonlinear optical chromo- phores.
Chemistry of Heterocyclic Compounds, Vol. 53, P. 504-510.
Sherif, M.H., Assy, M.G., Zahran, F., Khali, A. (2008) Synthesis of some New
Quinoxalines with expected Pharmacological Activities, Afinidad, 65, 156-162.
Upadhyay, A., Karpagam, S. (2017) Synthesis and photo physical properties of carbazole
based quinoxaline conjugated polymer for fluorescent detection of Ni2+. Dyes and
Pigments, 139, 50-64.
Vakhonina, T.A., Fazleeva, G.M., Kalinin, A.A., Gaysin, A.I., Shmelev, A.G., Islamova,
L.N., Fominykh, O.D., Sharipova, A.V., Shalin, N.I., Mukhtarov, A.S.,
Khamatgalimov, A.R., Balakina, M.Yu. (2022) Methacrylic copolymers with
quinoxaline chromophores in the side chain exhibiting quadratic nonlinear optical
response. Journal of Applied Polymer Science, e52745.
Wang, L., Wong, W.-K., Wu, L., Li, Z.-Y. (2005a) A Highly Selective Fluorescent
Chemosensor for Hg2+ in Aqueous Solution. Chemistry. Letters, 34, 934-935.
Wang, L., Zhu, X.J., Wong, W.-Y., Guo, J.P., Wong, W.K., Li, Z.Y. (2005b)
Dipyrrolylquinoxaline-bridged Schiff bases: a new class of fluorescent sensors for
mercury(ii). Dalton Transactions, 19, 3235-3240.
Xue, P., Xu, Q., Gong, P., Qian, C., Zhang, Z., Jia, J., Zhao, X., Lu, R., Renb, A., Zhang,
T. (2013) Two-component gel of a D–p–A–p–D carbazole donor and a fullerene
acceptor. RSC Advances, 3, 26403-26411.
Yanilkin, V.V., Nastapova, N.V., Stepanov, A.S., Kalinin, A.A., Mamedov V.A. (2009)
Cation binding by 2¹,3¹-diphenyl-1²,4²-dioxo-7,10,13-trioxa-1,4(3,1)-diquinoxalina-2
(2,3),3(3,2)-diindolizinacyclopentadecaphane and its acyclic analog. Russian
Chemical Bulletin, 58, 89-94.
Yin, X., Sun, H., Zeng, W., Xiang, Y., Zhou, T., Ma, D., Yang, C. (2016) Manipulating the
LUMO distribution of quinoxaline-containing architectures to design electron
transport materials: Efficient blue phosphorescent organic light-emitting diodes,
Organic Electronics, 37, 439-447.
Yuan, J., Ouyang, J., Cimrova, V., Leclerc, M., Najari, A., Zou Y. (2017) Development of
quinoxaline based polymers for photovoltaic applications. Journal of Materials
Chemistry C, 5, 1858-1879.
Zhan, Y., Hu, H. (2019) Modulation of the emission behavior and mechanofluoro chromism
by electron-donating moiety of D-π-A type quinoxaline derivatives. Dyes
and Pigments, 167, 127–134.
Zhan, Y., Wang, Y. (2020) Donor-acceptor π-conjugated quinoxaline derivatives exhibiting
multi-stimuli-responsive behaviors and polymorphism-dependent multicolor solid state emission,
Dyes and Pigments, 173, 107971.
Zhang, Z., Zheng, Y., Sun, Z., Dai, Z., Tang, Z., Ma, J., Ma, C. (2017) Direct Olefination
of Fluorinated Quinoxalines via CrossDehydrogenative Coupling Reactions: A New
Near-Infrared Probe for Mitochondria, Advanced Synthesis & Catalysis, 359, 2259 –2268.
Zhao, J., Sun, J., Simalou, O., Wang, H., Peng, J., Zhai, L., Xue, P., Lu, R. (2018) Multi stimuli-responsive fluorescent aminostyrylquinoxalines: Synthesis, solvatochro mism, mechanofluorochromism and acidochromism.
Dyes and Pigments, 151, 296-302.
Zhu, B., Zhang, T., Jiang, Q., Li, Y., Fu, Y., Dai, J., Li, G., Cheng, Q.Q,Y. (2018) Synthesis
and evaluation of pyrazine and quinoxaline fluorophores for in vivo detection of
cerebral tau tangles in Alzheimer’s models. Chemical Communications, 54, 11558-11561.


Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!