Cationic Amphiphiles: Self-Assembling Systems for Biomedicine and Biopharmacy

Ferdinand Devínsky, Martin Pisárčik, and Miloš Lukáč
Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia

Series: Medicinal Chemistry, Gene Therapy,  Nanomaterials
BISAC: MED058170

Clear

$230.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

Surfactants play an essential role in our daily lives. Their form of usage varies from detergents and cleaning agents through disinfectants and solubilizers up to industrial applications such as paints, oil recovery, anti-corrosion protective coatings, etc. A special distinct class of surfactants is represented by a double-chain, double-head form of surfactant molecules, which are called gemini surfactants. Gemini surfactants show physicochemical and aggregation properties which are superior to those of conventional, single-chain surfactants. From the perspective of applications, an important group of gemini surfactants is represented by cationic gemini surfactants. They have found numerous applications in the various fields such as solubilisation, textile coating, organic and polymer synthesis, electrochemistry, paper industry, etc. One of the most developing areas of cationic gemini surfactants application is the field of pharmaceutical applications. Interaction of cationic surfactants with the oppositely charged cell membrane has been known for a long time. Cationic gemini surfactants turned out to be very efficient bactericidal and antimicrobial agents. Moreover, recent development in this field indicates a cancerostatic effect of cationic geminis through a selective interaction of cationic gemini molecules with cancer cells. Another revolutionary field of cationic gemini surfactants application is their interaction with an oppositely charged electrolyte such as DNA. The interaction of DNA with various positively charged systems such as cationic surfactants, polymers and lipids is of great importance with respect to gene transmission through a biological cell membrane to achieve a therapeutic effect in a cell nucleus. The ambition of this monograph is to provide a complex view of synthesis, structure-aggregation, properties-biological activity relationship and recent applications of cationic gemini surfactants in the pharmaceutical field. Individual chapters in the monograph discuss the synthetic preparation of cationic surfactants, the effect of the structure of these compounds on their physical and physicochemical properties, particularly their aggregation properties and associated phenomena. A significant part of this publication is devoted to gemini surfactants, a relatively new class of surfactants whose special and surprising properties increasingly continue to draw the attention of the research community. The final part of the monograph is oriented on the use of cationic surfactants in biomedicine and pharmaceutical applications, where a special emphasis is put on their antimicrobial and antineoplastic activities. Finally, cationic surfactants as potent non-viral gene delivery vehicles are analyzed and evaluated. The monograph is intended to serve as a guide for scientists and students in the field of pharmaceutical research and chemistry of colloids and surfactants. (Imprint: Nova Biomedical)

Preface

Chapter 1. Classification of Cationic Amphiphilic Compounds and Their Chemical Structure

Chapter 2. Synthesis of Cationic Surfactants

Chapter 3. Physicochemical and Aggregation Properties of Cationic Surfactants

Chapter 4. Structure – Aggregation Properties Relationship of Cationic Amphiphiles

Chapter 5. Biological Activity of Cationic Amphiphilic Compounds

Chapter 6. Cationic Surfactants – Gene Delivery Vehicles

About the Authors

Index

Preface

[1] MarketsAndMarkets, “Surfactants Market by Type (Anionic, Non-Ionic, Cationic, and Amphoteric), Substrate (Synthetic, and Bio-based), Application (Detergents, Personal Care, Textile, Elastomers & Plastics, Crop Protection, Food & Beverage) – Global Forecast to 2021,” Report Code CH 3464, October 2016. n.d.
[2] Favre, H.A., Powell, W.H. Nomenclature of Organic Chemistry, IUPAC Recommendations and Preferred Names, Cambridge, RSC, IUPAC; 2013.
[3] Nägeli, C., Nägeli, K.W. Die Stärkekörner: Morphologische, physiologische, chemisch-physikalische und systematisch-botanische Monographie. bei F. Schulthess; 1858.
[4] Schryver, S.B., Ramsden, W., Cross, C.F., Schidrowitz, P., Dreaper, W.P., McBain, J.W., Turner, T., Worley, F.P., Martin, C.J., Bousfield, W.R., Morse, H.N., Henri, V., Freundlich, H., The Chairman, Ostwald, W., Chapman, C., Senter, G. Colloids and their viscosity: Discussion, Transactions of the Faraday Society. 1913, 9, 93. doi:10.1039/tf9130900093.
[5] Menger, F.M., Littau, C.A. Gemini-surfactants: synthesis and properties, Journal of the American Chemical Society. 1991, 113, 1451–2. doi:10.1021/ja00004a077.
[6] Bunton, C.A., Robinson, L.B., Schaak, J., Stam, M.F. Catalysis of nucleophilic substitutions by micelles of dicationic detergents, The Journal of Organic Chemistry. 1971, 36, 2346–50. doi:10.1021/jo00815a033.
[7] Lacko, I., Devínsky, F., Krasnec, L. N,N’-Bis(alkyldimethyl)-1,3-propanediammonium dibromides. Czech. 195 220, 1979.
[8] Devínsky, F., Masárová, Ľ., Lacko, I., Mlynarčík, D. Synthesis, IR spectra, and antimicrobial activity of some bis-ammonium salts of N,N’-bis(2-dimethylaminoethyl)methylamine, Collection of Czechoslovak Chemical Communications. 1984, 49, 2819–27. doi:10.1135/cccc19842819.
[9] Devínsky, F., Masárová, Ľ., Lacko, I. Surface activity and micelle formation of some new bisquaternary ammonium salts, Journal of Colloid and Interface Science. 1985, 105, 235–9. doi:10.1016/0021-9797(85)90363-7.
[10] Zana, R., Xia, J., editors. Gemini Surfactants: Synthesis, Interfacial and Solution-Phase Behavior, and Applications. New York: CRC Press; 2003.
[11] Joshi, R.K. PhD Thesis. Faculty of Pharmacy, Comenius University in Bratislava, 1968.

Chapter 1

[1] Rosen, M.J. Surfactants and Interfacial Phenomena. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2004.
[2] Zana, R., Xia, J., editors. Gemini Surfactants: Synthesis, Interfacial and Solution-Phase Behavior, and Applications. New York: CRC Press; 2003.
[3] Kronberg, B., Holmberg, K., Lindman, B. Surface Chemistry of Surfactants and Polymers: Kronberg/Surface Chemistry of Surfactants and Polymers. Chichester, UK: John Wiley & Sons, Ltd; 2014.
[4] Bradburn, D., Bittinger, T., editors. Micelles: Structural Biochemistry, Formation and Functions and Usage. New York: Nova Science Pub Inc; 2013.
[5] Jungermann, E. Cationic surfactants. New York: M. Dekker; 1970.
[6] Lange, K.R., editor. Surfactants: A Practical Handbook. Third Edition First Printing edition. Munich: Cincinnati: Hanser Gardner Publications; 1999.
[7] Mittal, K.L., Bothorel, P., editors. Surfactants in Solution. Boston, MA: Springer US; 1986.
[8] Moroi, Y. Micelles. Boston, MA: Springer US; 1992.
[9] Myers, D. Surfactant Science and Technology. John Wiley & Sons; 2005.
[10] Porter, M.R. Handbook of Surfactants. Boston, MA: Springer US; 1991.
[11] Richmond, J. Cationic Surfactants: Organic Chemistry. CRC Press; 1990.
[12] Rubingh, D. Cationic Surfactants: Physical Chemistry. CRC Press; 1990.
[13] Sanders, L., editor. Cationic Surfactants: Properties, Uses and Toxicity. Hauppauge, New York: Nova Science Pub Inc; 2016.
[14] Devínsky, F. Amine Oxides. X. Non-aromatic amine oxides: Physico-chemical properties and some characteristic reactions, Acta Fac Pharm. 1985, 39, 173–96.
[15] Búcsi, A., Karlovská, J., Chovan, M., Devínsky, F., Uhríková, D. Determination of pKa of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy, Chemical Papers. 2014, 68. doi:10.2478/s11696-013-0517-3.
[16] Łukomska, M., Rybarczyk-Pirek, A.J., Jabłoński, M., Palusiak, M. The nature of NO-bonding in N-oxide group, Phys Chem Chem Phys. 2015, 17, 16375–87. doi:10.1039/C5CP02148K.
[17] Floch, V., Loisel, S., Guenin, E., Hervé, A.C., Clément, J.C., Yaouanc, J.J., des Abbayes, H., Férec, C. Cation Substitution in Cationic Phosphonolipids: A New Concept to Improve Transfection Activity and Decrease Cellular Toxicity, Journal of Medicinal Chemistry. 2000, 43, 4617–28. doi:10.1021/jm000006z.
[18] Yamauchi, K., Hisanaga, Y., Kinoshita, M. Micellar methylating agents: (long-chain-alkyl)dimethylsulphonium iodides, Journal of the Chemical Society, Perkin Transactions 1. 1983, 1941. doi:10.1039/p19830001941.
[19] Berry, J.S. Sulfoxonium compounds. US3196184 A, 1965.
[20] Lang, J. Ultrasonic relaxation and carbon-13 NMR studies of dialkylmethylammonium chloride micelles, The Journal of Physical Chemistry. 1982, 86, 992–8. doi:10.1021/j100395a031.
[21] Anikin, V.F., Fed’ko, N.F. Tetraalkylammonium salts of naphthimide and its halo and nitro derivatives, Russian Journal of Applied Chemistry. 2006, 79, 411–5. doi:10.1134/S107042720 6030153.
[22] Kunitake, T., Kimizuka, N., Higashi, N., Nakashima, N. Bilayer membranes of triple-chain ammonium amphiphiles, Journal of the American Chemical Society. 1984, 106, 1978–83. doi:10.1021/ ja00319a014.
[23] Nuraje, N., Bai, H., Su, K. Bolaamphiphilic molecules: Assembly and applications, Progress in Polymer Science. 2013, 38, 302–43. doi:10.1016/j.progpolymsci.2012.09.003.
[24] Menger, F.M., Littau, C.A. Gemini-surfactants: synthesis and properties, Journal of the American Chemical Society. 1991, 113, 1451–2. doi:10.1021/ja00004a077.
[25] Menger, F.M., Littau, C.A. Gemini surfactants: a new class of self-assembling molecules, Journal of the American Chemical Society. 1993, 115, 10083–90. doi:10.1021/ja00075a025.
[26] Shukla, D., Tyagi, V.K. Cationic Gemini Surfactants: A Review, Journal of Oleo Science. 2006, 55, 381–90. doi:10.5650/jos.55.381.
[27] Sharma, V.D., Ilies, M.A. Heterocyclic Cationic Gemini Surfactants: A Comparative Overview of Their Synthesis, Self-assembling, Physicochemical, and Biological Properties: HETEROCYCLIC CATIONIC GEMINI SURFACTANTS, Medicinal Research Reviews. 2014, 34, 1–44. doi:10.1002/med.21272.
[28] Tyagi, P., Tyagi, R. Synthesis, Structural Properties and Applications of Gemini Surfactants: A Review, Tenside Surfactants Detergents. 2009, 46, 373–82. doi:10.3139/113.110045.
[29] Yan, Y., Huang, J., Li, Z., Zhao, X., Zhu, B., Ma, J. Surface properties of cationic bolaamphiphiles and their mixed systems with oppositely charged conventional surfactant, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003, 215, 263–75. doi:10.1016/S0927-7757(02)00486-7.
[30] Pupák, M., Karlovská, J. Preparation of novel gemini surfactants containing ester group, Acta Facult Pharm Univ Comenianae. 2007, 54, 215–9.
[31] Zaimis, E.J. The synthesis of methonium compounds, their isolation from urine, and their photometric determination, British Journal of Pharmacology and Chemotherapy. 1950, 5, 424–30. doi:10.1111/ j.1476-5381.1950.tb00592.x.
[32] Domag, G. Patent DE700008C -. DE700008 C, 1935.
[33] Ludwig, T., Friedrich, L. Quaternary ammonium compounds. US2113606 A, 1938.
[34] Rist, Ø., Rike, A., Ljones, L., Carlsen, P.H.J. Synthesis of Novel Diammonium Gemini Surfactants, Molecules. 2001, 6, 979–87. doi:10.3390/61200979.
[35] Zana, R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Advances in Colloid and Interface Science. 2002, 97, 205–53. doi:10.1016/S0001-8686(01) 00069-0.

[36] Zhu, L., Tang, Y., Wang, Y. Constructing Surfactant Systems with the Characteristics of Gemini and Oligomeric Surfactants Through Noncovalent Interaction, Journal of Surfactants and Detergents. 2016, 19, 237–47. doi:10.1007/s11743-016-1790-2.
[37] Jurašin, D., Dutour Sikirić, M. Higher Oligomeric Surfactants — From Fundamentals to Applications. In: Lesieur C, editor. Oligomerization of Chemical and Biological Compounds, InTech; 2014.
[38] Menger, F.M., Migulin, V.A. Synthesis and Properties of Multiarmed Geminis, The Journal of Organic Chemistry. 1999, 64, 8916–21. doi:10.1021/jo9912350.
[39] Laschewsky, A., Wattebled, L., Arotçaréna, M., Habib-Jiwan, J.-L., Rakotoaly, R.H. Synthesis and Properties of Cationic Oligomeric Surfactants, Langmuir. 2005, 21, 7170–9. doi:10.1021/la050952o.
[40] Wang, M., Huang, L., Sharma, S.K., Jeon, S., Thota, S., Sperandio, F.F., Nayka, S., Chang, J., Hamblin, M.R., Chiang, L.Y. Synthesis and Photodynamic Effect of New Highly Photostable Decacationically Armed [60]- and [70]Fullerene Decaiodide Monoadducts To Target Pathogenic Bacteria and Cancer Cells, Journal of Medicinal Chemistry. 2012, 55, 4274–85. doi:10.1021/ jm3000664.
[41] Raffa, P., Wever, D.A.Z., Picchioni, F., Broekhuis, A.A. Polymeric Surfactants: Synthesis, Properties, and Links to Applications, Chemical Reviews. 2015, 115, 8504–63. doi:10.1021/cr500129h.
[42] Cui, X., Qiao, C., Wang, S., Ding, Y., Hao, C., Li, J. Synthesis, surface properties, and antibacterial activity of polysiloxane quaternary ammonium salts containing epoxy group, Colloid and Polymer Science. 2015, 293, 1971–81. doi:10.1007/s00396-015-3588-6.
[43] Sellenet, P.H., Allison, B., Applegate, B.M., Youngblood, J.P. Synergistic Activity of Hydrophilic Modification in Antibiotic Polymers, Biomacromolecules. 2007, 8, 19–23. doi:10.1021/ bm0605513.
[44] Chooi, K.W., Hou, X.L., Qu, X., Soundararajan, R., Uchegbu, I.F. Claw Amphiphiles with a Dendrimer Core: Nanoparticle Stability and Drug Encapsulation Are Directly Proportional to the Number of Digits, Langmuir. 2013, 29, 4214–24. doi:10.1021/la304909r.
[45] Imam, T., Devinsky, F., Lacko, I., Mlynarcik, D., Krasnec, L. Preparation and antimicrobial activity of some new bisquaternary ammonium salts, Pharmazie. 1983, 38, 308–10.
[46] Machuca, L.M., Reno, U., Plem, S.C., Gagneten, A.M., Murguía, M.C. N-Acetylated Gemini Surfactants: Synthesis, Surface-Active Properties, Antifungal Activity, and Ecotoxicity Bioassays, Advances in Chemical Engineering and Science. 2015, 05, 215–24. doi:10.4236/aces.2015.52023.
[47] Misra, S.K., Biswas, J., Kondaiah, P., Bhattacharya, S. Gene Transfection in High Serum Levels: Case Studies with New Cholesterol Based Cationic Gemini Lipids, PLoS ONE. 2013, 8, e68305. doi:10.1371/journal.pone.0068305.
[48] Pietralik, Z., Kumita, J.R., Dobson, C.M., Kozak, M. The influence of novel gemini surfactants containing cycloalkyl side-chains on the structural phases of DNA in solution, Colloids and Surfaces B: Biointerfaces. 2015, 131, 83–92. doi:10.1016/j.colsurfb. 2015.04.042.
[49] Pupák, M., Lacko, I., Karlovská, J. Synthesis and micellar properties of some new organic amphiphilic surfactants, Acta Facult Pharm Univ Comenianae. 2006, 53, 193–9.
[50] Devínsky, F., Masárová, Ľ., Lacko, I., Mlynarčík, D. Synthesis, IR spectra, and antimicrobial activity of some bis-ammonium salts of N,N’-bis(2-dimethylaminoethyl)methylamine, Collection of Czechoslovak Chemical Communications. 1984, 49, 2819–27. doi:10.1135/cccc19842819.
[51] Menger, F.M., Keiper, J.S., Azov, V. Gemini Surfactants with Acetylenic Spacers, Langmuir. 2000, 16, 2062–7. doi:10.1021/ la9910576.

[52] Quagliotto, P., Barolo, C., Barbero, N., Barni, E., Compari, C., Fisicaro, E., Viscardi, G. Synthesis and Characterization of Highly Fluorinated Gemini Pyridinium Surfactants, European Journal of Organic Chemistry. 2009, 2009, 3167–77. doi:10.1002/ejoc. 200900063.
[53] Bhadani, A., Singh, S. Novel Gemini Pyridinium Surfactants: Synthesis and Study of Their Surface Activity, DNA Binding, and Cytotoxicity, Langmuir. 2009, 25, 11703–12. doi:10.1021/ la901641f.
[54] Gabdrakhmanov, D., Samarkina, D., Semenov, V., Syakaev, V., Giniyatullin, R., Gogoleva, N., Reznik, V., Latypov, S., Konovalov, A., Pokrovsky, A., Zuev, Y., Zakharova, L. Novel dicationic pyrimidinic surfactant: Self-assembly and DNA complexation, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015, 480, 113–21. doi:10.1016/j.colsurfa.2014.10.036.
[55] Hoque, J., Gonuguntla, S., Yarlagadda, V., Aswal, V.K., Haldar, J. Effect of amide bonds on the self-assembly of gemini surfactants, Physical Chemistry Chemical Physics. 2014, 16, 11279. doi:10.1039/c3cp55244f.
[56] Damen, M., Cristóbal-Lecina, E., Sanmartí, G.C., van Dongen, S.F.M., García Rodríguez, C.L., Dolbnya, I.P., Nolte, R.J.M., Feiters, M.C. Structure–delivery relationships of lysine-based gemini surfactants and their lipoplexes, Soft Matter. 2014, 10, 5702–14. doi:10.1039/C4SM00881B.
[57] Brycki, B., Szulc, A. Gemini Alkyldeoxy-D-Glucitolammonium Salts as Modern Surfactants and Microbiocides: Synthesis, Antimicrobial and Surface Activity, Biodegradation, PLoS ONE. 2014, 9, e84936. doi:10.1371/journal.pone.0084936.
[58] Badr, E.E., Kandeel, E.M., El-Sadek, B.M. Novel Gemini Cationic Surfactants Based on N, N-Dimethyl Fatty Hydrazide and 1,3-Dibromopropane: Synthesis, Evaluation of Surface and Antimicrobial Properties, Journal of Oleo Science. 2010, 59, 647–52. doi:10.5650/jos.59.647.
[59] Richter, C., Feth, G., A.G, C.-C. Antimicrobial quaternary pyrazole derivatives. EP0020077 A1, 1979.
[60] Dye Jr, W.T. Herbicidal alkyl-amino-phosphonium halides. US2774658 A, 1955.

Chapter 2

[1] Devínsky, F., Ďurinda, J., Lacko, I., Valentová, J. Organic Chemistry for Pharmacy Students, Bratislava, Comenius University Press, 2010.
[2] Pernak, J., Walkiewicz, W. Kinetics of synthesis of octylthiomethylpyridinium chloride, Polish Journal of Chemistry. 1981, 55, 1109–14.
[3] Pernak, J., Branicka, M. Synthesis and Aqueous Ozonation of Some Pyridinium Salts with Alkoxymethyl and Alkylthiomethyl Hydrophobic Groups, Industrial & Engineering Chemistry Research. 2004, 43, 1966–74. doi:10.1021/ie030118z.
[4] Yoh, S.-D., Cheong, D.-Y., Lee, C.-H., Kim, S.-H., Park, J.-H., Fujio, M., Tsuno, Y. ConcurrentSN1 andSN2 reactions in the benzylation of pyridines, Journal of Physical Organic Chemistry. 2001, 14, 123–30. doi:10.1002/poc.346.
[5] Amovilli, C., Mennucci, B., Floris, F.M. MCSCF Study of the S N 2 Menshutkin Reaction in Aqueous Solution within the Polarizable Continuum Model, The Journal of Physical Chemistry B. 1998, 102, 3023–8. doi:10.1021/jp9803945.
[6] Jiang, L., Orimoto, Y., Aoki, Y. Stereoelectronic effects in Menshutkin-type SN2 reactions: theoretical study based on through-space/bond orbital interaction analysis, Journal of Physical Organic Chemistry. 2013, 26, 885–91. doi:10.1002/poc.3186.
[7] Giacinto, P., Zerbetto, F., Bottoni, A., Calvaresi, M. CNT-Confinement Effects on the Menshutkin S N 2 Reaction: The Role of Nonbonded Interactions, Journal of Chemical Theory and Computation. 2016, 12, 4082–92. doi:10.1021/acs.jctc.6b00260.
[8] Lukáč, M., Mrva, M., Garajová, M., Mojžišová, G., Varinská, L., Mojžiš, J., Sabol, M., Kubincová, J., Haragová, H., Ondriska, F., Devínsky, F. Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, hexadecylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride, European Journal of Medicinal Chemistry. 2013, 66, 46–55. doi:10.1016/ j.ejmech.2013.05.033.
[9] Westphal, O., Jerchel, D. Über die Umsetzung von höheren 1-Chlor-paraffinen mit Ammoniak, primären, sekundären und tertiären Aminen, Berichte Der Deutschen Chemischen Gesellschaft (A and B Series). 1940, 73, 1002–11. doi:10.1002/cber.19400730913.
[10] Chernyavskaya, M.A., Stefanovich, V.V., Sergeeva, I.A., Belova, A.S. Antimicrobial and surface-active properties of cationic surfactants based on chloroalkanes and alkylbenzenes, Pharmaceutical Chemistry Journal. 1984, 18, 784–7. doi:10.1007/ BF00779905.
[11] Watanabe, M., Makino, T., Okada, K., Kara, M., Watabe, S., Arai, S. Alkylbenzyldimethylammonium salts as inhibitors for the ice nucleating activity of Erwinia ananas., Agricultural and Biological Chemistry. 1988, 52, 201–6. doi:10.1271/bbb1961.52.201.
[12] Devínsky, F., Lacko, I., Bittererová, F., Mlynarčík, D. Quaternary ammonium-salts. 18. Preparation and relationship between structure, IR spectral characteristics, and antimicrobial activity of some new bis-quaternary isosters of 1,5-pentanediammonium dibromides, Chemical Papers. 1987, 41, 803–14.
[13] Ludwig, T., Friedrich, L. Quaternary ammonium compounds. US2113606 A, 1938.
[14] Jiang, Y., Geng, T., Li, Q. Synthesis of Quaternary Ammonium Salts with Novel Counterions, Journal of Surfactants and Detergents. 2012, 15, 67–71. doi:10.1007/s11743-011-1289-9.

[15] Lukáč, M., Garajová, M., Mrva, M., Devínsky, F., Ondriska, F., Kubincová, J. Novel fluorinated dialkylphosphonatocholines: Synthesis, physicochemical properties and antiprotozoal activities against Acanthamoeba spp., Journal of Fluorine Chemistry. 2014, 164, 10–7. doi:10.1016/j.jfluchem.2014.04.008.
[16] Jerchel, D., Kimmig, J. Invertseifen als Antimykotika; Zusammenhänge zwischen Konstitution und Wirkung, Chemische Berichte. 1950, 83, 277–87. doi:10.1002/cber.19500830316.
[17] Zou, X., Zhao, X., Ye, L. Synthesis of cationic chitosan hydrogel with long chain alkyl and its controlled glucose-responsive drug delivery behavior, RSC Adv. 2015, 5, 96230–41. doi:10.1039/ C5RA16328E.
[18] Kim, T.-S., Hirao, T., Ikeda, I. Preparation of bis-quaternary ammonium salts from epichlorohydrin, Journal of the American Oil Chemists’ Society. 1996, 73, 67–71. doi:10.1007/BF02523450.
[19] zu Putlitz, B., Hentze, H.-P., Landfester, K., Antonietti, M. New Cationic Surfactants with Sulfonium Headgroups, Langmuir. 2000, 16, 3214–20. doi:10.1021/la991322n.
[20] Yamauchi, K., Hisanaga, Y., Kinoshita, M. Three-phase model of micellar reactions. Methylation of thymidine by (long-chain-alkyl)dimethylsulfonium iodides, Journal of the American Chemical Society. 1983, 105, 538–45. doi:10.1021/ja00341a039.
[21] Devínsky, F., Lacko, I., Mlynarčík, D., Švajdlenka, E., Borovská, V. Quaternary ammonium-salts. 33. QSAR of antimicrobially active Niketamide derivatives, Chemical Papers. 1990, 44, 159–70.
[22] Aupoix, A., Pégot, B., Vo-Thanh, G. Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation, Tetrahedron. 2010, 66, 1352–6. doi:10.1016/j.tet.2009.11.110.
[23] Lukáč, M., Devínsky, F., Papapetropoulou, A., Bukovský, M., Horváth, B. Novel phospholium type cationic surfactants: synthesis, aggregation properties and antimicrobial activity, Journal of Surfactants and Detergents. 2017. doi:10.1007/s11743-016-1908-6.
[24] Meyer, D., Strassner, T. 1,2,4-Triazole-Based Tunable Aryl/Alkyl Ionic Liquids, The Journal of Organic Chemistry. 2011, 76, 305–8. doi:10.1021/jo101784v.
[25] Schulz, T., Ahrens, S., Meyer, D., Allolio, C., Peritz, A., Strassner, T. Electronic Effects of para-Substitution on the Melting Points of TAAILs, Chem Asian J. 2011, 6, 863–7. doi:10.1002/asia. 201000744.
[26] Kamboj, R., Singh, S., Bhadani, A., Kataria, H., Kaur, G. Gemini Imidazolium Surfactants: Synthesis and Their Biophysiochemical Study, Langmuir. 2012, 28, 11969–78. doi:10.1021/la300920p.
[27] Ilies, M.A., Seitz, W.A., Caproiu, M.T., Wentz, M., Garfield, R.E., Balaban, A.T. Pyridinium-Based Cationic Lipids as Gene-Transfer Agents, European Journal of Organic Chemistry. 2003, 2003, 2645–55. doi:10.1002/ejoc.200300106.
[28] Ilies, M.A., Seitz, W.A., Ghiviriga, I., Johnson, B.H., Miller, A., Thompson, E.B., Balaban, A.T. Pyridinium Cationic Lipids in Gene Delivery: A Structure−Activity Correlation Study, Journal of Medicinal Chemistry. 2004, 47, 3744–54. doi:10.1021/jm0499763.
[29] Ilies, M.A., Seitz, W.A., Johnson, B.H., Ezell, E.L., Miller, A.L., Thompson, E.B., Balaban, A.T. Lipophilic Pyrylium Salts in the Synthesis of Efficient Pyridinium-Based Cationic Lipids, Gemini Surfactants, and Lipophilic Oligomers for Gene Delivery, Journal of Medicinal Chemistry. 2006, 49, 3872–87. doi:10.1021/jm0601755.
[30] Pérez, L., Pinazo, A., Pons, R., Infante, Mr. Gemini surfactants from natural amino acids, Advances in Colloid and Interface Science. 2014, 205, 134–55. doi:10.1016/j.cis.2013.10.020.
[31] Colomer, A., Pinazo, A., Manresa, M.A., Vinardell, M.P., Mitjans, M., Infante, M.R., Pérez, L. Cationic Surfactants Derived from Lysine: Effects of Their Structure and Charge Type on Antimicrobial and Hemolytic Activities, Journal of Medicinal Chemistry. 2011, 54, 989–1002. doi:10.1021/jm101315k.

[32] Pérez, L., Torres, J.L., Manresa, A., Solans, C., Infante, M.R. Synthesis, Aggregation, and Biological Properties of a New Class of Gemini Cationic Amphiphilic Compounds from Arginine, bis(Args), Langmuir. 1996, 12, 5296–301. doi:10.1021/la960301f.
[33] Song, Y., Li, Q., Li, Y. Self-aggregation and antimicrobial activity of alkylguanidium salts, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2012, 393, 11–6. doi:10.1016/j.colsurfa. 2011.10.015.
[34] Song, Y., Li, Q., Li, Y., Zhi, L. Surface and aggregation properties of heterogemini surfactants containing quaternary ammonium and guanidine moiety, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013, 417, 236–42. doi:10.1016/j.colsurfa. 2012.11.004.
[35] El Hankari, S., Hesemann, P. Guanidinium vs. Ammonium Surfactants in Soft-Templating Approaches: Nanostructured Silica and Zwitterionic i -Silica from Complementary Precursor-Surfactant Ion Pairs, European Journal of Inorganic Chemistry. 2012, 2012, 5288–98. doi:10.1002/ejic.201200419.
[36] Taft, R.W. Linear Free Energy Relationships from Rates of Esterification and Hydrolysis of Aliphatic and Ortho-substituted Benzoate Esters, Journal of the American Chemical Society. 1952, 74, 2729–32. doi:10.1021/ja01131a010.
[37] Taft, R.W. Polar and Steric Substituent Constants for Aliphatic and o-Benzoate Groups from Rates of Esterification and Hydrolysis of Esters, Journal of the American Chemical Society. 1952, 74, 3120–8. doi:10.1021/ja01132a049.
[38] Taft, R.W. Linear Steric Energy Relationships, Journal of the American Chemical Society. 1953, 75, 4538–9. doi:10.1021/ ja01114a044.
[39] Wang, T.-T., Huang, T.-C. Kinetics of the quaternizations of tertiary amines with benzyl chloride, The Chemical Engineering Journal and the Biochemical Engineering Journal. 1993, 53, 107–13. doi:10.1016/0923-0467(93)85001-C.
[40] Clayden, J., Greeves, N., Warren, S., Wothers, P. Organic Chemistry. Oxford ; New York: OUP Oxford; 2001.
[41] McMurry, J. Organic Chemistry, 7th Edition. 7th edition. Belmont, CA: Thomson; 2008.
[42] Paniak, T.J., Jennings, M.C., Shanahan, P.C., Joyce, M.D., Santiago, C.N., Wuest, W.M., Minbiole, K.P.C. The antimicrobial activity of mono-, bis-, tris-, and tetracationic amphiphiles derived from simple polyamine platforms, Bioorganic & Medicinal Chemistry Letters. 2014, 24, 5824–8. doi:10.1016/j.bmcl.2014.10.018.
[43] Jurašin, D., Habuš, I., Filipović-Vinceković, N. Role of the alkyl chain number and head groups location on surfactants self-assembly in aqueous solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010, 368, 119–28. doi:10.1016/j.colsurfa. 2010.07.025.
[44] Wang, T.-T., Iou, Q.-L. The solvent effect and the structural effect of halides on the quaternization Et3N+RX→Et3RNX, Chemical Engineering Journal. 2002, 87, 197–206. doi:10.1016/S1385-8947 (01)00230-3.
[45] Pajuste, K., Gosteva, M., Kaldre, D., Plotniece, M., Cekavicus, B., Sobolev, A., Priksane, A., Tirzitis, G., Duburs, G., Plotniece, A. Effect of the solvent nature on the course of quaternization of 3,5-diethoxycarbonyl-2,6-dimethyl-4-(3-pyridyl)-1,4-dihydropyridine, Chemistry of Heterocyclic Compounds. 2011, 47, 597–601. doi:10.1007/s10593-011-0803-3.
[46] Ukawa, K., Imamiya, E., Yamamoto, H., Mizuno, K., Tasaka, A., Terashita, Z., Okutani, T., Nomura, H., Kasukabe, T., Hozumi, M. Synthesis and antitumor activity of new alkylphospholipids containing modifications of the phosphocholine moiety, Chem Pharm Bull. 1989, 37, 1249–55.
[47] Avlonitis, N., Lekka, E., Detsi, A., Koufaki, M., Calogeropoulou, T., Scoulica, E., Siapi, E., Kyrikou, I., Mavromoustakos, T., Tsotinis, A., Grdadolnik, S.G., Makriyannis, A. Antileishmanial Ring-Substituted Ether Phospholipids, Journal of Medicinal Chemistry. 2003, 46, 755–67. doi:10.1021/jm020972c.
[48] Hirt, R., Berchtold, R. Zur Synthese der Phosphatide. 2. Eine neue Synthese der Lecithine, Pharm Acta Helv. 1958, 33, 349–56.
[49] Fuji, M., Fujii, Y., Hashizume, H., Okuno, T., Shirahase, K., Teshirogi, I., Ohtani, M. A Stereoselective and Highly Practical Synthesis of Cytosolic Phospholipase A2 Substrate, 2-S-Arachidonoyl-1-O-hexadecyl-sn-2-thioglycero-3-O-phosphocholine, Journal of Organic Chemistry. 1997, 62, 6804–9. doi:10.1021/
jo970882t.
[50] Eibl, H. Phospholipid synthesis: Oxazaphospholanes and dioxaphospholanes as intermediates, Proc Natl Acad Sci U S A. 1978, 75, 4074–7.
[51] Kumar Erukulla, R., Byun, H.-S., Bittman, R. Antitumor phospholipids: A one-pot introduction of a phosphocholine moiety into lipid hydroxy acceptors, Tetrahedron Letters. 1994, 35, 5783–4. doi:10.1016/S0040-4039(00)78183-4.
[52] Hendrickson, E.K., Hendrickson, H.S. Efficient synthesis of the cholinephosphate phospholipid headgroup, Chemistry and Physics of Lipids. 2001, 109, 203–7. doi:10.1016/S0009-3084(00)00224-3.

Chapter 3

[1] Tanford, C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes. 2nd edition. New York: Wiley; 1980.
[2] Israelachvili, J.N., Mitchell, D.J., Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J Chem Soc Faraday Trans 2. 1976, 72, 1525. doi:10.1039/
f29767201525.
[3] Porte, G., Poggi, Y., Appell, J., Maret, G. Large micelles in concentrated solutions. The second critical micellar concentration, J Phys Chem. 1984, 88, 5713–20. doi:10.1021/j150667a051.
[4] Moroi, Y. Micelles. Boston, MA: Springer US; 1992.
[5] Ozeki, S., Ikeda, S. The sphere—rod transition of micelles and the two-step micellization of dodecyltrimethylammonium bromide in aqueous NaBr solutions, J Colloid Interface Sci. 1982, 87, 424–35. doi:10.1016/0021-9797(82)90339-3.
[6] Imae, T., Ikeda, S. Sphere-rod transition of micelles of tetradecyltrimethylammonium halides in aqueous sodium halide solutions and flexibility and entanglement of long rodlike micelles, J Phys Chem. 1986, 90, 5216–23. doi:10.1021/j100412a065.
[7] Imae, T., Kamiya, R., Ikeda, S. Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions, J Colloid Interface Sci. 1985, 108, 215–25. doi:10.1016/0021-9797(85)90253-X.
[8] Swanson-Vethamuthu, M., Feitosa, E., Brown, W. Salt-Induced Sphere-to-Disk Transition of Octadecyltrimethylammonium Bromide Micelles, Langmuir. 1998, 14, 1590–6. doi:10.1021/ la9608167.
[9] Ikeda, S., Ozeki, S., Tsunoda, M.-A. Micelle molecular weight of dodecyldimethylammonium chloride in aqueous solutions, and the transition of micelle shape in concentrated NaCl solutions, J Colloid Interface Sci. 1980, 73, 27–37. doi:10.1016/0021-9797(80)90117-4.

[10] Ozeki, S., Ikeda, S. The sphere-rod transition of micelles of dodecyldimethylammonium bromide in aqueous NaBr solutions, and the effects of counterion binding on the micelle size, shape and structure, Colloid Polym Sci. 1984, 262, 409–17. doi:10.1007/
BF01410261.
[11] Ozeki, S., Ikeda, S. The viscosity behavior of aqueous NaCl solutions of dodecyldimethylammonium chloride and the flexibility of its rod-like micelle, J Colloid Interface Sci. 1980, 77, 219–31. doi:10.1016/0021-9797(80)90434-8.
[12] Fujio, K., Ikeda, S. Size of spherical micelles of dodecylpyridinium bromide in aqueous NaBr solutions, Langmuir. 1991, 7, 2899–903. doi:10.1021/la00060a006.
[13] Hayashi, S., Ikeda, S. Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions, J Phys Chem. 1980, 84, 744–51. doi:10.1021/j100444a011.
[14] Young, C.Y., Missel, P.J., Mazer, N.A., Benedek, G.B., Carey, M.C. Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations, J Phys Chem. 1978, 82, 1375–8. doi:10.1021/j100501a011.
[15] Magid, L.J., Han, Z., Warr, G.G., Cassidy, M.A., Butler, P.D., Hamilton, W.A. Effect of Counterion Competition on Micellar Growth Horizons for Cetyltrimethylammonium Micellar Surfaces: Electrostatics and Specific Binding, J Phys Chem B. 1997, 101, 7919–27. doi:10.1021/jp970864f.
[16] Buckingham, S.A., Garvey, C.J., Warr, G.G. Effect of head-group size on micellization and phase behavior in quaternary ammonium surfactant systems, J Phys Chem. 1993, 97, 10236–44. doi:10.1021/j100141a054.
[17] Berr, S., Jones, R.R.M., Johnson, J.S. Effect of counterion on the size and charge of alkyltrimethylammonium halide micelles as a function of chain length and concentration as determined by small-angle neutron scattering, J Phys Chem. 1992, 96, 5611–4. doi:10.1021/j100192a075.
[18] Koike, A., Yamamura, T., Nemoto, N. Dynamic light scattering of CTAB:NaSal threadlike micelles in the semidilute regime. II. effect of surfactant concentration, Colloid Polym Sci. 1994, 272, 955–61. doi:10.1007/BF00658893.
[19] Nemoto, N., Kuwahara, M. Self diffusion and viscoelasticity of elongated micelles from cetyltrimethyl-ammonium bromide in aqueous sodium salicylate solution. II. Temperature effect, Colloid Polym Sci. 1994, 272, 846–54. doi:10.1007/BF00652426.
[20] Makhloufi, R., Hirsch, E., Candau, S.J., Binana-Limbele, W., Zana, R. Fluorescence quenching and elastic and quasi-elastic light scattering studies of elongated micelles in solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate, J Phys Chem. 1989, 93, 8095–101. doi:10.1021/ j100361a024.
[21] Ikeda, S., Tsunoda, M.-A., Maeda, H. The effects of ionization on micelle size of dimethyldodecylamine oxide, J Colloid Interface Sci. 1979, 70, 448–55. doi:10.1016/0021-9797(79)90052-3.
[22] Imae, T., Ikeda, S. Rodlike micelles of dimethyloleylamine oxide in aqueous NaCl solutions, and their flexibility and size distribution, Colloid Polym Sci. 1984, 262, 497–506. doi:10.1007/BF01412047.
[23] Maeda, H., Muroi, S., Kakehashi, R. Effects of Ionic Strength on the Critical Micelle Concentration and the Surface Excess of Dodecyldimethylamine Oxide, J Phys Chem B. 1997, 101, 7378–82. doi:10.1021/jp9633815.
[24] Maeda, H. Dodecyldimethylamine oxide micelles: stability, aggregation number and titration properties, Colloids Surf Physicochem Eng Asp. 1996, 109, 263–71. doi:10.1016/0927-7757(95)03459-5.
[25] Imaishi, Y., Kakehashi, R., Nezu, T., Maeda, H. Dodecyldimethylamine Oxide Micelles in Solutions without Added Salt, J Colloid Interface Sci. 1998, 197, 309–16. doi:10.1006/jcis.1997.5242.

[26] Garamus, V., Kameyama, K., Kakehashi, R., Maeda, H. Neutron scattering and electrophoresis of dodecyldimethylamine oxide micelles, Colloid Polym Sci. 1999, 277, 868–74. doi:10.1007/s003960050463.
[27] Maeda, H., Muroi, S., Ishii, M., Kakehashi, R., Kaimoto, H., Nakahara, T., Motomura, K. Effects of Ionization on the Critical Micelle Concentration and the Surface Excess of Dodecyldimethylamine Oxide in Salt Solutions, J Colloid Interface Sci. 1995, 175, 497–505. doi:10.1006/jcis.1995.1481.
[28] Kawasaki, H., Fukuda, T., Yamamoto, A., Fukada, K., Maeda, H. Solid state phase behaviors of dodecyldimethylamine oxide: protonation and counterion effects, Colloids Surf Physicochem Eng Asp. 2000, 169, 117–24. doi:10.1016/S0927-7757(00)00423-4.
[29] Rathman, J.F., Christian, S.D. Determination of surfactant activities in micellar solutions of dimethyldodecylamine oxide, Langmuir. 1990, 6, 391–5. doi:10.1021/la00092a018.
[30] Kawasaki, H., Maeda, H. Electrophoretic mobility of the polymer-like micelles of tetradecyldimethylamine oxide hemihydrochloride, Colloids Surf Physicochem Eng Asp. 2004, 250, 479–83. doi:10.1016/j.colsurfa.2004.04.097.
[31] Hashimoto, K., Imae, T. Rheological properties of aqueous solutions of alkyl- and oleyldimethylamine oxides. Spinnability and viscoelasticity, Langmuir. 1991, 7, 1734–41. doi:10.1021/ la00056a027.
[32] Pisárčik, M., Devínsky, F., Švajdlenka, E. Spherical dodecyltrimethylammonium bromide micelles in the limit region of transition to rod-like micelles. A light scattering study, Colloids Surf Physicochem Eng Asp. 1996, 119, 115–22. doi:10.1016/S0927-7757(96)03754-5.
[33] Dorshow, R., Briggs, J., Bunton, C.A., Nicoli, D.F. Dynamic light scattering from cetyltrimethylammonium bromide micelles. Intermicellar interactions at low ionic strengths, J Phys Chem. 1982, 86, 2388–95. doi:10.1021/j100210a028.
[34] Dorshow, R.B., Bunton, C.A., Nicoli, D.F. Comparative study of intermicellar interactions using dynamic light scattering, J Phys Chem. 1983, 87, 1409–16. doi:10.1021/j100231a026.
[35] Zhao, J., Brown, W. Adsorption of Alkyltrimethylammonium Bromides on Negatively Charged Polystyrene Latex Particles Using Dynamic Light Scattering and Adsorption Isotherm Measurements, Langmuir. 1995, 11, 2944–50. doi:10.1021/la00008a017.
[36] Matsuoka, K., Yonekawa, A., Ishii, M., Honda, C., Endo, K., Moroi, Y., Abe, Y., Tamura, T. Micellar size, shape and counterion binding of N-(1,1-Dihydroperfluoroalkyl)-N,N,N-trimethylammonium chloride in aqueous solutions, Colloid Polym Sci. 2006, 285, 323–30. doi:10.1007/s00396-006-1574-8.
[37] Imae, T. Scattering vector dependence of mutual diffusion coefficients for rodlike micelles in aqueous sodium halide solutions, J Phys Chem. 1989, 93, 6720–5. doi:10.1021/j100355a030.
[38] Feitosa, E., Brown, W. Fragment and Vesicle Structures in Sonicated Dispersions of Dioctadecyldimethylammonium Bromide, Langmuir. 1997, 13, 4810–6. doi:10.1021/la962034j.
[39] Müller, A., Burchard, W. Structure formation of surfactants in concentrated sulphuric acid: a light scattering study, Colloid Polym Sci. 1995, 273, 866–75. doi:10.1007/BF00657636.
[40] Mao, M., Huang, J., Zhu, B., Ye, J. The Transition from Vesicles to Micelles Induced by Octane in Aqueous Surfactant Two-Phase Systems, J Phys Chem B. 2002, 106, 219–25. doi:10.1021/ jp0107255.
[41] Zana, R., Lévy, H., Danino, D., Talmon, Y., Kwetkat, K. Mixed Micellization of Cetyltrimethylammonium Bromide and an Anionic Dimeric (Gemini) Surfactant in Aqueous Solution, Langmuir. 1997, 13, 402–8. doi:10.1021/la9606963.
[42] Shikata, T., Morishima, Y. Microdynamic Behavior in Threadlike Micelles, Langmuir. 1996, 12, 5307–11. doi:10.1021/la9603481.

[43] Blandamer, M.J., Briggs, B., Cullis, P.M., Engberts, J.B.F.N., Kacperska, A. Vesicle–surfactant interactions: effects of added surfactants on the gel to liquid-crystal transition for two vesicular systems, J Chem Soc Faraday Trans. 1995, 91, 4275–8. doi:10.1039/FT9959104275.
[44] Schulz, P.C., Minardi, R.M., Vuano, B. Dodecyltrimethylammonium bromide-disodium dodecanephosphonate mixed micelles, Colloid Polym Sci. 1999, 277, 837–45. doi:10.1007/s003960050460.
[45] Xiao, J.-X., Bao, Y.-X. An Unusual Variation of Surface Tension with Concentration of Mixed Cationic-anionic Surfactants, Chin J Chem. 2010, 19, 73–5. doi:10.1002/cjoc.20010190113.
[46] Zana, R., Michels, B. On the Formation of Vesicles by Mixtures of Anionic and Cationic Surfactants in Ethanol, Langmuir. 1998, 14, 6599–602. doi:10.1021/la980712r.
[47] Patist, A., Chhabra, V., Pagidipati, R., Shah, R., Shah, D.O. Effect of Chain Length Compatibility on Micellar Stability in Sodium Dodecyl Sulfate/Alkyltrimethylammonium Bromide Solutions, Langmuir. 1997, 13, 432–4. doi:10.1021/la960838t.
[48] Patist, A., Huibers, P.D.T., Deneka, B., Shah, D.O. Effect of Tetraalkylammonium Chlorides on Foaming Properties of Sodium Dodecyl Sulfate Solutions, Langmuir. 1998, 14, 4471–4. doi:10.1021/la980169e.
[49] Devínsky, F., Lacko, I., Imam, T. Micellization of Some Bisquaternary Ammonium Salt Amphiphiles: Structure-Properties Relationships, Acta Fac Pharm. 1990, 44, 103–14.
[50] Pisárčik, M., Devínsky, F., Lacko, I. Critical micelle concentration, ionisation degree and micellisation energy of cationic dimeric (gemini) surfactants in aqueous solution and in mixed micelles with anionic surfactant, Acta Fac Pharm. 2000, 50, 119–31.
[51] Hattori, N., Hirata, H., Okabayashi, H., Furusaka, M., O’Connor, C.J., Zana, R. Small-angle neutron-scattering study of bis
(quaternaryammonium bromide) surfactant micelles in water. Effect of the long spacer chain on micellar structure, Colloid Polym Sci. 1999, 277, 95–100. doi:10.1007/s003960050373.
[52] Pisárčik, M., Dubničková, M., Devıìnsky, F., Lacko, I., Škvarla, J. Dynamic light scattering and electrokinetic potential of bis(quarternary ammonium bromide) surfactant micelles as the function of the alkyl chain length, Colloids Surf Physicochem Eng Asp. 1998, 143, 69–75. doi:10.1016/S0927-7757(98)00497-X.
[53] Danino, D., Talmon, Y., Zana, R. Alkanediyl-α,ω-Bis(Dimethylalkylammonium Bromide) Surfactants (Dimeric Surfactants). 5. Aggregation and Microstructure in Aqueous Solutions, Langmuir. 1995, 11, 1448–56. doi:10.1021/la00005a008.
[54] Pisárčik, M., Devıìnsky, F., Lacko, I. Aggregation number of alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants determined by static light scattering, Colloids Surf Physicochem Eng Asp. 2000, 172, 139–44. doi:10.1016/S0927-7757(00)00589-6.
[55] Pisárčik, M., Jampílek, J., Devínsky, F., Drábiková, J., Tkacz, J., Opravil, T. Gemini Surfactants with Polymethylene Spacer: Supramolecular Structures at Solid Surface and Aggregation in Aqueous Solution, J Surfactants Deterg. 2016, 19, 477–86. doi:10.1007/s11743-016-1797-8.
[56] Zana, R., Levy, H., Papoutsi, D., Beinert, G. Micellization of Two Triquaternary Ammonium Surfactants in Aqueous Solution, Langmuir. 1995, 11, 3694–8. doi:10.1021/la00010a018.
[57] Esumi, K., Taguma, K., Koide, Y. Aqueous Properties of Multichain Quaternary Cationic Surfactants, Langmuir. 1996, 12, 4039–41. doi:10.1021/la960230k.
[58] Zhu, Y., Masuyama, A., Okahara, M. Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains, J Am Oil Chem Soc. 1990, 67, 459–63. doi:10.1007/BF02638962.
[59] Zana, R. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants: II. Krafft Temperature and Melting Temperature, J Colloid Interface Sci. 2002, 252, 259–61. doi:10.1006/ jcis.2002.8457.

[60] Pérez, L., Pinazo, A., Rosen, M.J., Infante, M.R. Surface Activity Properties at Equilibrium of Novel Gemini Cationic Amphiphilic Compounds from Arginine, Bis(Args), Langmuir. 1998, 14, 2307–15. doi:10.1021/la971135u.
[61] Menger, F.M., Littau, C.A. Gemini surfactants: a new class of self-assembling molecules, J Am Chem Soc. 1993, 115, 10083–90. doi:10.1021/ja00075a025.
[62] Shinoda, K., Maekawa, M., Shibata, Y. Ionic surfactants soluble in hard water and in hydrocarbons: behavior of organized surfactant solutions as a function of the hydrophilic-lipophilic balance, J Phys Chem. 1986, 90, 1228–30. doi:10.1021/j100398a005.
[63] Saito, S. Solubilization properties of polymer-surfactant complexes, J Colloid Interface Sci. 1967, 24, 227–34. doi:10.1016/0021-9797(67)90225-1.
[64] Mecozzi, S., West, A.P., Dougherty, D.A. Cation−π Interactions in Simple Aromatics: Electrostatics Provide a Predictive Tool, J Am Chem Soc. 1996, 118, 2307–8. doi:10.1021/ja9539608.
[65] Rosen, M.J. Surfactants and Interfacial Phenomena. 3rd ed. New York: J. Wiley & Sons; 2004.
[66] Rosen, M.J., Liu, L. Surface activity and premicellar aggregation of some novel diquaternary gemini surfactants, J Am Oil Chem Soc. 1996, 73, 885–90. doi:10.1007/BF02517990.
[67] Devínsky, F., Lacko, I. Surface Activity and Micelle Formation of Some Bis-quaternary Ammonium Salts of Glycerine Derivative, Tenside Surfactants Deterg. 1990, 27, 334–49.
[68] Devínsky, F., Lacko, I., Bittererová, F., Tomečková, L. Relationship between structure, surface activity, and micelle formation of some new bisquaternary isosteres of 1,5-pentanediammonium dibromides, J Colloid Interface Sci. 1986, 114, 314–22. doi:10.1016/0021-9797(86)90417-0.
[69] Li, Z.X., Dong, C.C., Thomas, R.K. Neutron Reflectivity Studies of the Surface Excess of Gemini Surfactants at the Air−Water Interface, Langmuir. 1999, 15, 4392–6. doi:10.1021/la981551u.
[70] Zana, R. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants: 10. Behavior in Aqueous Solution at Concentrations below the Critical Micellization Concentration: An Electrical Conductivity Study, J Colloid Interface Sci. 2002, 246, 182–90. doi:10.1006/jcis.2001.7921.
[71] Alami, E., Beinert, G., Marie, P., Zana, R. Alkanediyl-α, ω-bis(dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water interface, Langmuir. 1993, 9, 1465–7. doi:10.1021/la00030a006.
[72] Wettig, S.D., Verrall, R.E. Thermodynamic Studies of Aqueous m–s–m Gemini Surfactant Systems, J Colloid Interface Sci. 2001, 235, 310–6. doi:10.1006/jcis.2000.7348.
[73] Song, L.D., Rosen, M.J. Surface Properties, Micellization, and Premicellar Aggregation of Gemini Surfactants with Rigid and Flexible Spacers, Langmuir. 1996, 12, 1149–53. doi:10.1021/la950508t.
[74] Sikirić, M., Primožič, I., Filipović-Vinceković, N. Adsorption and Association in Aqueous Solutions of Dissymmetric Gemini Surfactant, J Colloid Interface Sci. 2002, 250, 221–9. doi:10.1006/jcis.2002.8304.
[75] Sikirić, M., Primožič, I., Talmon, Y., Filipović-Vinceković, N. Effect of the spacer length on the association and adsorption behavior of dissymmetric gemini surfactants, J Colloid Interface Sci. 2005, 281, 473–81. doi:10.1016/j.jcis.2004.08.140.
[76] Xu, Q., Wang, L., Xing, F. Synthesis and Properties of Dissymmetric Gemini Surfactants, J Surfactants Deterg. 2011, 14, 85–90. doi:10.1007/s11743-010-1207-6.
[77] Devínsky, F., Masárová, Ľ., Lacko, I. Surface activity and micelle formation of some new bisquaternary ammonium salts, J Colloid Interface Sci. 1985, 105, 235–9. doi:10.1016/0021-9797(85)90363-7.
[78] Rosen, M.J., Mathias, J.H., Davenport, L. Aberrant Aggregation Behavior in Cationic Gemini Surfactants Investigated by Surface Tension, Interfacial Tension, and Fluorescence Methods, Langmuir. 1999, 15, 7340–6. doi:10.1021/la9904096.
[79] Zhu, Y.-P., Masuyama, A., Kobata, Y., Nakatsuji, Y., Okahara, M., Rosen, M.J. Double-Chain Surfactants with Two Carboxylate Groups and Their Relation to Similar Double-Chain Compounds, J Colloid Interface Sci. 1993, 158, 40–5. doi:10.1006/jcis.1993.1226.
[80] Alami, E., Levy, H., Zana, R., Skoulios, A. Alkanediyl-.alpha.,.omega.-bis(dimethylalkylammonium bromide) surfactants. 2. Structure of the lyotropic mesophases in the presence of water, Langmuir. 1993, 9, 940–4. doi:10.1021/la00028a011.
[81] Diamant, H., Andelman, D. Dimeric Surfactants: Spacer Chain Conformation and Specific Area at the Air/Water Interface, Langmuir. 1994, 10, 2910–6. doi:10.1021/la00021a012.
[82] Maiti, P.K., Chowdhury, D. Micellar aggregates of gemini surfactants: Monte Carlo simulation of a microscopic model, Europhys Lett EPL. 1998, 41, 183–8. doi:10.1209/epl/i1998-00128-3.
[83] Pisárčik, M., Rosen, M.J., Polakovičová, M., Devínsky, F., Lacko, I. Area per surfactant molecule values of gemini surfactants at the liquid–hydrophobic solid interface, J Colloid Interface Sci. 2005, 289, 560–5. doi:10.1016/j.jcis.2005.03.092.
[84] Rosen, M.J., Song, L.D. Dynamic Surface Tension of Aqueous Surfactant Solutions 8. Effect of Spacer on Dynamic Properties of Gemini Surfactant Solutions, J Colloid Interface Sci. 1996, 179, 261–8. doi:10.1006/jcis.1996.0212.
[85] Pinazo, A., Wen, X., Pérez, L., Infante, M.-R., Franses, E.I. Aggregation Behavior in Water of Monomeric and Gemini Cationic Surfactants Derived from Arginine, Langmuir. 1999, 15, 3134–42. doi:10.1021/la981295l.
[86] Grosmaire, L., Chorro, M., Chorro, C., Partyka, S., Zana, R. Alkanediyl-α,ω-Bis(dimethylalkylammonium Bromide) Surfactants: 9. Effect of the Spacer Carbon Number and Temperature on the Enthalpy of Micellization, J Colloid Interface Sci. 2002, 246, 175–81. doi:10.1006/jcis.2001.8001.

[87] Parreira, H.C., Lukenbach, E.R., Lindemann, M.K.O. Physical chemical properties of solutions of bis-quaternary ammonium bromides, J Am Oil Chem Soc. 1979, 56, 1015–21. doi:10.1007/BF02674157.
[88] Dreja, M., Pyckhout-Hintzen, W., Mays, H., Tieke, B. Cationic Gemini Surfactants with Oligo(oxyethylene) Spacer Groups and Their Use in the Polymerization of Styrene in Ternary Microemulsion, Langmuir. 1999, 15, 391–9. doi:10.1021/la981354v.
[89] Hattori, N., Yoshino, A., Okabayashi, H., O’Connor, C.J. Conformational Analysis of (Phenylenedimethylene)bis(n-octylammonium)dibromides in Aqueous Solution. Conformational Change upon Micellization., J Phys Chem B. 1999, 103, 746–746. doi:10.1021/jp984679t.
[90] Anthony, O., Zana, R. Interactions between Water-Soluble Polymers and Surfactants: Effect of the Polymer Hydrophobicity. 1. Hydrophilic Polyelectrolytes, Langmuir. 1996, 12, 1967–75. doi:10.1021/la950817j.
[91] Anthony, O., Zana, R. Interactions between Water-Soluble Polymers and Surfactants: Effect of the Polymer Hydrophobicity. 2. Amphiphilic Polyelectrolytes (Polysoaps), Langmuir. 1996, 12, 3590–7. doi:10.1021/la960184o.
[92] Zana, R., Benrraou, M. Interactions between Polyanions and Cationic Surfactants with Two Unequal Alkyl Chains or of the Dimeric Type, J Colloid Interface Sci. 2000, 226, 286–9. doi:10.1006/jcis.2000.6823.
[93] Fundin, J., Brown, W. Polymer/Surfactant Interactions. Sodium Poly(styrene sulfonate) and CTAB Complex Formation. Light Scattering Measurements in Dilute Aqueous Solution, Macromolecules. 1994, 27, 5024–31. doi:10.1021/ma00096a026.
[94] Almgren, M., Hansson, P., Mukhtar, E., Van Stam, J. Aggregation of alkyltrimethylammonium surfactants in aqueous poly(styrenesulfonate) solutions, Langmuir. 1992, 8, 2405–12. doi:10.1021/la00046a011.
[95] Gao, Z., Wasylishen, R.E., Kwak, J.C.T. Carbon-13 NMR relaxation study of molecular dynamics and organization of sodium poly(styrenesulfonate) and dodecyltrimethylammonium bromide aggregates in aqueous solution, J Phys Chem. 1990, 94, 773–6. doi:10.1021/j100365a048.
[96] Hayakawa, K., Kwak, J.C.T. Surfactant-polyelectrolyte interactions. 1. Binding of dodecyltrimethylammonium ions by sodium dextransulfate and sodium poly(styrenesulfonate) in aqueous solution in the presence of sodium chloride, J Phys Chem. 1982, 86, 3866–70. doi:10.1021/j100216a032.
[97] Hansson, P., Almgren, M. Interaction of Alkyltrimethylammonium Surfactants with Polyacrylate and Poly(styrenesulfonate) in Aqueous Solution: Phase Behavior and Surfactant Aggregation Numbers, Langmuir. 1994, 10, 2115–24. doi:10.1021/la00019a017.
[98] Yoshimura, T., Nagata, Y., Esumi, K. Interactions of quaternary ammonium salt-type gemini surfactants with sodium poly(styrene sulfonate), J Colloid Interface Sci. 2004, 275, 618–22. doi:10.1016/j.jcis.2004.03.002.
[99] Thalberg, K., Lindman, B., Bergfeldt, K. Phase behavior of systems of polyacrylate and cationic surfactants, Langmuir. 1991, 7, 2893–8. doi:10.1021/la00060a005.
[100] Hansson, P., Almgren, M. Polyelectrolyte-Induced Micelle Formation of Ionic Surfactants and Binary Surfactant Mixtures Studied by Time-Resolved Fluorescence Quenching, J Phys Chem. 1995, 99, 16684–93. doi:10.1021/j100045a031.
[101] Hansson, P., Almgren, M. Large C12TAB Micelles Formed in Complexes with Polyvinylsulfate and Dextran Sulfate, J Phys Chem. 1995, 99, 16694–703. doi:10.1021/j100045a032.
[102] Hayakawa, K., Fukutome, T., Satake, I. Solubilization of water-insoluble dye by a cooperative binding system of surfactant and polyelectrolyte, Langmuir. 1990, 6, 1495–8. doi:10.1021/ la00099a011.

[103] Vethamuthu, M.S., Almgren, M., Mukhtar, E., Bahadur, P. Fluorescence quenching studies of the aggregation behavior of the mixed micelles of bile salts and cetyltrimethylammonium halides, Langmuir. 1992, 8, 2396–404. doi:10.1021/la00046a010.
[104] Hansson, P., Almgren, M. Interaction of CnTAB with Sodium (Carboxymethyl)cellulose: Effect of Polyion Linear Charge Density on Binding Isotherms and Surfactant Aggregation Number, J Phys Chem. 1996, 100, 9038–46. doi:10.1021/jp953637r.
[105] Samanta, A., Chattoraj, D.. Simultaneous adsorption of gelatin and long-chain amphiphiles at solid-water interface, J Colloid Interface Sci. 1987, 116, 168–76. doi:10.1016/0021-9797(87)90107-X.
[106] Biswas, S.C., Chattoraj, D.K. Polysaccharide−Surfactant Interaction. 1. Adsorption of Cationic Surfactants at the Cellulose−Water Interface, Langmuir. 1997, 13, 4505–11. doi:10.1021/la960905j.
[107] Biswas, S.C., Chattoraj, D.K. Polysaccharide−Surfactant Interaction. 2. Binding of Cationic Surfactants to Carboxymethyl Cellulose and Dextrin, Langmuir. 1997, 13, 4512–9. doi:10.1021/la960914s.
[108] Langevin, D. Polyelectrolyte and surfactant mixed solutions. Behavior at surfaces and in thin films, Adv Colloid Interface Sci. 2001, 89–90, 467–84. doi:10.1016/S0001-8686(00)00068-3.
[109] Thalberg, K., Lindman, B. Interaction between hyaluronan and cationic surfactants, J Phys Chem. 1989, 93, 1478–83. doi:10.1021/j100341a058.
[110] Pisárčik, M., Bakoš, D., Čeppan, M. Non-Newtonian properties of hyaluronic acid aqueous solution, Colloids Surf Physicochem Eng Asp. 1995, 97, 197–202. doi:10.1016/0927-7757(95)03097-W.
[111] Pisárčik, M., Soldán, M., Bakoš, D., Devıìnsky, F., Lacko, I. Viscometric study of the sodium hyaluronate-sodium chloride-alkyl-(n)-ammonium surfactant system, Colloids Surf Physicochem Eng Asp. 1999, 150, 207–16. doi:10.1016/S0927-7757(98)00837-1.

[112] Pisárčik, M., Imae, T., Devínsky, F., Lacko, I., Bakoš, D. Aggregation Properties of Sodium Hyaluronate with Alkanediyl-α,ω-bis(dimethylalkylammonium Bromide) Surfactants in Aqueous Sodium Chloride Solution, J Colloid Interface Sci. 2000, 228, 207–12. doi:10.1006/jcis.2000.6948.
[113] Pisárčik, M., Imae, T., Devıìnsky, F., Lacko, I. Aggregates of sodium hyaluronate with cationic and aminoxide surfactants in aqueous solution — light scattering study, Colloids Surf Physicochem Eng Asp. 2001, 183–185, 555–62. doi:10.1016/S0927-7757(01)00512-X.
[114] Thalberg, K., Van Stam, J., Lindblad, C., Almgren, M., Lindman, B. Time-resolved fluorescence and self-diffusion studies in systems of a cationic surfactant and an anionic polyelectrolyte, J Phys Chem. 1991, 95, 8975–82. doi:10.1021/j100175a101.
[115] Herslöf-Björling, Å., Sundelöf, L.-O., Porsch, B., Valtcheva, L., Hjertén, S. Interaction between an Anionic Polysaccharide and an Oppositely Charged Surfactant. Quasi Elastic Light Scattering, Size Exclusion Chromatography, and Capillary Electrophoresis Study of the Sodium Hyaluronate/Tetradecyltrimethylammonium Bromide/ Sodium Chloride/Water System, Langmuir. 1996, 12, 4628–37. doi:10.1021/la950222o.
[116] Hersloef, A., Sundeloef, L.O., Edsman, K. Interaction between polyelectrolyte and surfactant of opposite charge: hydrodynamic effects in the sodium hyaluronate/tetradecyltrimethylammonium bromide/sodium chloride/water system, J Phys Chem. 1992, 96, 2345–8. doi:10.1021/j100184a061.
[117] Kayitmazer, A.B., Seyrek, E., Dubin, P.L., Staggemeier, B.A. Influence of Chain Stiffness on the Interaction of Polyelectrolytes with Oppositely Charged Micelles and Proteins, J Phys Chem B. 2003, 107, 8158–65. doi:10.1021/jp034065a.
[118] Thalberg, K., Lindman, B., Karlstroem, G. Phase behavior of a system of cationic surfactant and anionic polyelectrolyte: the effect of salt, J Phys Chem. 1991, 95, 6004–11. doi:10.1021/j100168a053.

[119] Thalberg, K., Lindman, B., Karlstroem, G. Phase diagram of a system of cationic surfactant and anionic polyelectrolyte: tetradecyltrimethylammonium bromide-hyaluronan-water, J Phys Chem. 1990, 94, 4289–95. doi:10.1021/j100373a075.
[120] Thalberg, K., Lindman, B. Gel formation in aqueous systems of a polyanion and an oppositely charged surfactant, Langmuir. 1991, 7, 277–83. doi:10.1021/la00050a013.

Chapter 4

[1] Pérez, L., Pinazo, A., Pons, R., Infante, Mr. Gemini surfactants from natural amino acids, Adv Colloid Interface Sci. 2014, 205, 134–55. doi:10.1016/j.cis.2013.10.020.
[2] Bordes, R., Holmberg, K. Amino acid-based surfactants – do they deserve more attention?, Adv Colloid Interface Sci. 2015, 222, 79–91. doi:10.1016/j.cis.2014.10.013.
[3] Infante, M.R., Pérez, L., Pinazo, A., Clapés, P., Morán, M.C., Angelet, M., García, M.T., Vinardell, M.P. Amino acid-based surfactants, Comptes Rendus Chim. 2004, 7, 583–92. doi:10.1016/j.crci.2004.02.009.
[4] Morán, M.C., Pinazo, A., Pérez, L., Clapés, P., Angelet, M., García, M.T., Vinardell, M.P., Infante, M.R. “Green” amino acid-based surfactants, Green Chem. 2004, 6, 233–40. doi:10.1039/B400293H.
[5] Mhatre, J.D., Singare, P.U. Study of Synthesis and Physicochemical Properties of Arginine Derived Cationic Surfactants, Am J Org Chem. 2012, 2, 41–4. doi:10.5923/j.ajoc.20120203.01.
[6] Singare, P.U., Mhatre, J.D. Cationic Surfactants from Arginine: Synthesis and Physicochemical Properties, Am J Chem. 2012, 2, 186–90. doi:10.5923/j.chemistry.20120204.02.
[7] Valivety, R., Gill, I.S., Vulfson, E.N. Application of enzymes to the synthesis of amino acid-based bola and gemini surfactants, J Surfactants Deterg. 1998, 1, 177–85. doi:10.1007/s11743-998-0017-3.
[8] Infante, R., Dominguez, J.G., Erra, P., Julia, R., Prats, M. Surface active molecules: preparation and properties of long chain n-alpha-acyl-l-alpha-omega-guanidine alkyl acid derivatives, Int J Cosmet Sci. 1984, 6, 275–82. doi:10.1111/j.1467-2494.1984.tb00385.x.
[9] Clapés, P., Rosa Infante, M. Amino Acid-based Surfactants: Enzymatic Synthesis, Properties and Potential Applications, Biocatal Biotransformation. 2002, 20, 215–33. doi:10.1080/
10242420290004947.
[10] Pinazo, A., Wen, X., Pérez, L., Infante, M.R., Franses, E.I. Aggregation Behaviour in Water of Monomeric and Gemini Cationic Surfactants Derived from Arginine, Langmuir. 1999, 15, 3134–42. doi:10.1021/la981295l.
[11] Shimoni, L., Glusker, J.P. Hydrogen bonding motifs of protein side chains: Descriptions of binding of arginine and amide groups, Protein Sci. 2008, 4, 65–74. doi:10.1002/pro.5560040109.
[12] Petrauskas, V., Maximowitsch, E., Matulis, D. Thermodynamics of Ion Pair Formations Between Charged Poly(Amino Acid)s, J Phys Chem B. 2015, 119, 12164–71. doi:10.1021/acs.jpcb.5b05767.
[13] Solans, C., Infante, R., Azemar, N., Wärnheim, T. Phase behaviour of cationic lipoaminoacid surfactant systems. In: Bothorel P, Dufourc EJ, editors. Trends Colloid Interface Sci. III, vol. 79, Darmstadt: Steinkopff; 1989, p. 70–5.
[14] Fördedal, H., Sjöblom, J., Infante, M.R. Lipoamino acid association in the system Nα-lauroyl-l-arginine methyl ester—1-pentanol—water as studied by dielectric spectroscopy, Colloids Surf Physicochem Eng Asp. 1993, 79, 81–8. doi:10.1016/0927-7757(93)80162-8.
[15] Lozano, N., Pérez, L., Pons, R., Luque-Ortega, J.R., Fernández-Reyes, M., Rivas, L., Pinazo, A. Interaction studies of diacyl glycerol arginine-based surfactants with DPPC and DMPC monolayers, relation with antimicrobial activity, Colloids Surf Physicochem Eng Asp. 2008, 319, 196–203. doi:10.1016/ j.colsurfa.2007.07.015.
[16] Pérez, L., Pinazo, A., Rosen, M.J., Infante, M.R. Surface Activity Properties at Equilibrium of Novel Gemini Cationic Amphiphilic Compounds from Arginine, Bis(Args), Langmuir. 1998, 14, 2307–15. doi:10.1021/la971135u.
[17] Pérez, L., Torres, J.L., Manresa, A., Solans, C., Infante, M.R. Synthesis, Aggregation, and Biological Properties of a New Class of Gemini Cationic Amphiphilic Compounds from Arginine, bis(Args), Langmuir. 1996, 12, 5296–301. doi:10.1021/la960301f.
[18] Pinazo, A., Pérez, L., Infante, M.R., Franses, E.I. Relation of foam stability to solution and surface properties of gemini cationic surfactants derived from arginine, Colloids Surf Physicochem Eng Asp. 2001, 189, 225–35. doi:10.1016/S0927-7757(01)00595-7.
[19] Weihs, D., Danino, D., Pinazo-Gassol, A., Perez, L., Franses, E.I., Talmon, Y. Self-aggregation in dimeric arginine-based cationic surfactants solutions, Colloids Surf Physicochem Eng Asp. 2005, 255, 73–8. doi:10.1016/j.colsurfa.2004.11.035.
[20] Pérez, L., Garcia, M.T., Ribosa, I., Vinardell, M.P., Manresa, A., Infante, M.R. Biological properties of arginine-based gemini cationic surfactants, Environ Toxicol Chem. 2002, 21, 1279–85. doi:10.1002/etc.5620210624.
[21] Mhaskar, S.Y., Prasad, R.B.N., Lakshminarayana, G. Synthesis of N-acyl amino acids and correlation of structure with surfactant properties of their sodium salts, J Am Oil Chem Soc. 1990, 67, 1015–9. doi:10.1007/BF02541868.
[22] Gad, E.A.M., El-Sukkary, M.M.A., Ismail, D.A. Surface and thermodynamic parameters of sodium N-acyl sarcosinate surfactant solutions, J Am Oil Chem Soc. 1997, 74, 43–7. doi:10.1007/s11746-997-0117-x.
[23] Hanuš, L., Shohami, E., Bab, I., Mechoulam, R. N-Acyl amino acids and their impact on biological processes, BioFactors. 2014, 40, 381–8. doi:10.1002/biof.1166.
[24] Yoshimura, T., Sakato, A., Tsuchiya, K., Ohkubo, T., Sakai, H., Abe, M., Esumi, K. Adsorption and aggregation properties of amino acid-based N-alkyl cysteine monomeric and N,N’-dialkyl cystine gemini surfactants, J Colloid Interface Sci. 2007, 308, 466–73. doi:10.1016/j.jcis.2006.11.038.
[25] Fan, H., Han, F., Liu, Z., Qin, L., Li, Z., Liang, D., Ke, F., Huang, J., Fu, H. Active control of surface properties and aggregation behaviour in amino acid-based Gemini surfactant systems, J Colloid Interface Sci. 2008, 321, 227–34. doi:10.1016/j.jcis.2008.01.039.

[26] Faustino, C.M.C., Calado, A.R.T., Garcia-Rio, L. Interactions between β-cyclodextrin and an amino acid-based anionic gemini surfactant derived from cysteine, J Colloid Interface Sci. 2012, 367, 286–92. doi:10.1016/j.jcis.2011.07.101.
[27] Faustino, C.M.C., Serafim, C.S., Ferreira, I.N., Branco, M.A., Calado, A.R.T., Garcia-Rio, L. Mixed Micelle Formation between an Amino Acid-Based Anionic Gemini Surfactant and Bile Salts, Ind Eng Chem Res. 2014, 53, 10112–8. doi:10.1021/ie5003735.
[28] Faustino, C.M.C., Calado, A.R.T., Garcia-Rio, L. Gemini Surfactant−Protein Interactions: Effect of pH, Temperature, and Surfactant Stereochemistry, Biomacromolecules. 2009, 10, 2508–14. doi:10.1021/bm9004723.
[29] Branco, M.A., Pinheiro, L., Faustino, C. Amino acid-based cationic gemini surfactant–protein interactions, Colloids Surf Physicochem Eng Asp. 2015, 480, 105–12. doi:10.1016/j.colsurfa.2014.12.022.
[30] Zanette, D., Lima, C.F., Ruzza, Â.A., Belarmino, A.T.N., de F. Santos, S., Frescura, V.L.A., Marconi, D.M.O., Froehner, S.J. Interactions of anionic surfactants with poly(ethylene oxide) and bovine serum albumin polymers: effect of the counterion hydrophobicity, Colloids Surf Physicochem Eng Asp. 1999, 147, 89–105. doi:10.1016/S0927-7757(98)00746-8.
[31] Ghosh, S., Banerjee, A. A Multitechnique Approach in Protein/Surfactant Interaction Study: Physicochemical Aspects of Sodium Dodecyl Sulfate in the Presence of Trypsin in Aqueous Medium, Biomacromolecules. 2002, 3, 9–16. doi:10.1021/bm005644d.
[32] Ghosh, S. Physicochemical and conformational studies of papain/sodium dodecyl sulfate system in aqueous medium, Colloids Surf Physicochem Eng Asp. 2005, 264, 6–16. doi:10.1016/j.colsurfa.2005.02.032.
[33] Shweitzer, B., Zanette, D., Itri, R. Bovine serum albumin (BSA) plays a role in the size of SDS micelle-like aggregates at the saturation binding: the ionic strength effect, J Colloid Interface Sci. 2004, 277, 285–91. doi:10.1016/j.jcis.2004.04.059.
[34] Cao, M., Cao, C., Zhou, P., Wang, N., Wang, D., Wang, J., Xia, D., Xu, H. Self-assembly of amphiphilic peptides: Effects of the single-chain-to-gemini structural transition and the side chain groups, Colloids Surf Physicochem Eng Asp. 2015, 469, 263–70. doi:10.1016/j.colsurfa.2015.01.044.
[35] Yoshimura, T., Sakato, A., Esumi, K. Solution Properties and Emulsification Properties of Amino Acid-Based Gemini Surfactants Derived from Cysteine, J Oleo Sci. 2013, 62, 579–86. doi:10.5650/jos.62.579.
[36] Faustino, C., Serafim, C., Ferreira, I., Pinheiro, L., Calado, A. Solubilization power of an amino acid-based gemini surfactant towards the hydrophobic drug amphotericin B, Colloids Surf Physicochem Eng Asp. 2015, 480, 426–32. doi:10.1016/
j.colsurfa.2014.11.039.
[37] Marques, E.F., Brito, R.O., Silva, S.G., Rodríguez-Borges, J.E., Vale, M.L. do, Gomes, P., Araújo, M.J., Söderman, O. Spontaneous Vesicle Formation in Catanionic Mixtures of Amino Acid-Based Surfactants: Chain Length Symmetry Effects, Langmuir. 2008, 24, 11009–17. doi:10.1021/la801518h.
[38] Singh, J., Michel, D., Chitanda, J.M., Verrall, R.E., Badea, I. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles, J Nanobiotechnology. 2012, 10, 7. doi:10.1186/1477-3155-10-7.
[39] Korchowiec, B., Gorczyca, M., Korchowiec, J., Rubio-Magnieto, J., Lotfallah, A.H., Luis, S.V., Rogalska, E. Structure – membrane activity relationship in a family of peptide-based gemini amphiphiles: An insight from experimental and theoretical model systems, Colloids Surf B Biointerfaces. 2016, 146, 54–62. doi:10.1016/j.colsurfb.2016.05.040.
[40] Sakai, K., Nomura, K., Shrestha, R.G., Endo, T., Sakamoto, K., Sakai, H., Abe, M. Effects of Spacer Chain Length of Amino Acid-Based Gemini Surfactants on Wormlike Micelle Formation, J Oleo Sci. 2014, 63, 249–55. doi:10.5650/jos.ess13162.
[41] Sakai, K., Ohno, K., Nomura, K., Endo, T., Sakamoto, K., Sakai, H., Abe, M. α-Gel Formation by Amino Acid-Based Gemini Surfactants, Langmuir. 2014, 30, 7654–9. doi:10.1021/la501186h.
[42] Naqvi, A.Z., Noori, S., Kabir-ud-Din. Effect of surfactant structure on the mixed micelle formation of cationic gemini–zwitterionic phospholipid systems, Colloids Surf Physicochem Eng Asp. 2015, 477, 9–18. doi:10.1016/j.colsurfa.2015.03.009.
[43] Kumar, S., Bhargava, P., Sreekanth, V., Bajaj, A. Design, synthesis, and physico-chemical interactions of bile acid derived dimeric phospholipid amphiphiles with model membranes, J Colloid Interface Sci. 2015, 448, 398–406. doi:10.1016/j.jcis.2015.01.069.
[44] Baltazar, Q.Q., Chandawalla, J., Sawyer, K., Anderson, J.L. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids, Colloids Surf Physicochem Eng Asp. 2007, 302, 150–6. doi:10.1016/
j.colsurfa.2007.02.012.
[45] Ding, Y.-S., Zha, M., Zhang, J., Wang, S.-S. Synthesis, characterization and properties of geminal imidazolium ionic liquids, Colloids Surf Physicochem Eng Asp. 2007, 298, 201–5. doi:10.1016/j.colsurfa.2006.10.063.
[46] Ao, M., Xu, G., Zhu, Y., Bai, Y. Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants, J Colloid Interface Sci. 2008, 326, 490–5. doi:10.1016/j.jcis.2008.06.048.
[47] Ao, M., Huang, P., Xu, G., Yang, X., Wang, Y. Aggregation and thermodynamic properties of ionic liquid-type gemini imidazolium surfactants with different spacer length, Colloid Polym Sci. 2009, 287, 395–402. doi:10.1007/s00396-008-1976-x.
[48] Danino, D., Talmon, Y., Zana, R. Alkanediyl-α,ω-Bis(Dimethylalkylaminium Bromide) Surfactants (Dimeric Surfactants). 5. Aggregation and Microstructure in Aqueous Solutions, Langmuir. 1995, 11, 1448–56. doi:10.1021/la00005a008.

[49] Liu, G., Gu, D., Liu, H., Ding, W., Li, Z. Enthalpy–entropy compensation of ionic liquid-type Gemini imidazolium surfactants in aqueous solutions: A free energy perturbation study, J Colloid Interface Sci. 2011, 358, 521–6. doi:10.1016/j.jcis.2011.03.064.
[50] Ren, C., Wang, F., Zhang, Z., Nie, H., Li, N., Cui, M. Synthesis, surface activity and aggregation behaviour of Gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide, Colloids Surf Physicochem Eng Asp. 2015, 467, 1–8. doi:10.1016/j.colsurfa.2014.11.031.
[51] Bhadani, A., Singh, S. Synthesis and Properties of Thioether Spacer Containing Gemini Imidazolium Surfactants, Langmuir. 2011, 27, 14033–44. doi:10.1021/la202201r.
[52] Zhao, X., An, D., Ye, Z. Adsorption and thermodynamic properties of dissymmetric gemini imidazolium surfactants with different spacer length, J Dispers Sci Technol. 2017, 38, 296–302. doi:10.1080/01932691.2016.1163721.
[53] Kamboj, R., Singh, S., Bhadani, A., Kataria, H., Kaur, G. Gemini Imidazolium Surfactants: Synthesis and Their Biophysiochemical Study, Langmuir. 2012, 28, 11969–78. doi:10.1021/la300920p.
[54] Wang, L., Liu, J., Huo, S., Deng, Q., Yan, T., Ding, L., Zhang, C., Meng, L., Lu, Q. Synthesis and Surface Properties of Novel Gemini Imidazolium Surfactants, J Surfactants Deterg. 2014, 17, 1107–16. doi:10.1007/s11743-014-1615-0.
[55] Zhuang, L.-H., Yu, K.-H., Wang, G.-W., Yao, C. Synthesis and properties of novel ester-containing gemini imidazolium surfactants, J Colloid Interface Sci. 2013, 408, 94–100. doi:10.1016/
j.jcis.2013.07.029.
[56] Garcia, M.T., Ribosa, I., Perez, L., Manresa, A., Comelles, F. Aggregation Behaviour and Antimicrobial Activity of Ester-Functionalized Imidazolium- and Pyridinium-Based Ionic Liquids in Aqueous Solution, Langmuir. 2013, 29, 2536–45. doi:10.1021/
la304752e.

[57] Aiad, I., Emam, D., El-Deeb, A., Abd-Alrahman, E. Novel Imidazolium-Based Gemini Surfactants: Synthesis, Surface Properties, Corrosion Inhibition and Biocidal Activity Against Sulfate-Reducing Bacteria, J Surfactants Deterg. 2013, 16, 927–35. doi:10.1007/s11743-013-1491-z.
[58] Wang, L., Qin, H., Ding, L., Huo, S., Deng, Q., Zhao, B., Meng, L., Yan, T. Preparation of a Novel Class of Cationic Gemini Imidazolium Surfactants Containing Amide Groups as the Spacer: Their Surface Properties and Antimicrobial Activity, J Surfactants Deterg. 2014, 17, 1099–106. doi:10.1007/s11743-014-1614-1.
[59] Casal-Dujat, L., Rodrigues, M., Yagüe, A., Calpena, A.C., Amabilino, D.B., González-Linares, J., Borràs, M., Pérez-García, L. Gemini Imidazolium Amphiphiles for the Synthesis, Stabilization, and Drug Delivery from Gold Nanoparticles, Langmuir. 2012, 28, 2368–81. doi:10.1021/la203601n.
[60] Bhadani, A., Kataria, H., Singh, S. Synthesis, characterization and comparative evaluation of phenoxy ring containing long chain gemini imidazolium and pyridinium amphiphiles, J Colloid Interface Sci. 2011, 361, 33–41. doi:10.1016/j.jcis.2011.05.023.
[61] Datta, S., Biswas, J., Bhattacharya, S. How does spacer length of imidazolium gemini surfactants control the fabrication of 2D-Langmuir films of silver-nanoparticles at the air–water interface?, J Colloid Interface Sci. 2014, 430, 85–92. doi:10.1016/
j.jcis.2014.05.018.
[62] Quagliotto, P., Viscardi, G., Barolo, C., Barni, E., Bellinvia, S., Fisicaro, E., Compari, C. Gemini Pyridinium Surfactants: Synthesis and Conductometric Study of a Novel Class of Amphiphiles 1, J Org Chem. 2003, 68, 7651–60. doi:10.1021/jo034602n.
[63] Zana, R., Benrraou, M., Rueff, R. Alkanediyl-.alpha.,.omega.-bis(dimethylalkylaminium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree, Langmuir. 1991, 7, 1072–5. doi:10.1021/ la00054a008.
[64] Fisicaro, E., Compari, C., Biemmi, M., Duce, E., Peroni, M., Barbero, N., Viscardi, G., Quagliotto, P. Unusual Behaviour of the Aqueous Solutions of Gemini Bispyridinium Surfactants: Apparent and Partial Molar Enthalpies of the Dimethanesulfonates, J Phys Chem B. 2008, 112, 12312–7. doi:10.1021/jp804271z.
[65] Fisicaro, E., Compari, C., Bacciottini, F., Barbero, N., Viscardi, G., Quagliotto, P. Is the counterion responsible for the unusual thermodynamic behaviour of the aqueous solutions of gemini bispyridinium surfactants?, Colloids Surf Physicochem Eng Asp. 2014, 443, 249–54. doi:10.1016/j.colsurfa.2013.11.003.
[66] Fisicaro, E., Compari, C., Bacciottini, F., Contardi, L., Barbero, N., Viscardi, G., Quagliotto, P., Donofrio, G., Różycka-Roszak, B., Misiak, P., Woźniak, E., Sansone, F. Nonviral Gene Delivery: Gemini Bispyridinium Surfactant-Based DNA Nanoparticles, J Phys Chem B. 2014, 118, 13183–91. doi:10.1021/jp507999g.
[67] Zhou, L., Jiang, X., Li, Y., Chen, Z., Hu, X. Synthesis and Properties of a Novel Class of Gemini Pyridinium Surfactants, Langmuir. 2007, 23, 11404–8. doi:10.1021/la701154w.
[68] Bhadani, A., Singh, S. Novel Gemini Pyridinium Surfactants: Synthesis and Study of Their Surface Activity, DNA Binding, and Cytotoxicity, Langmuir. 2009, 25, 11703–12. doi:10.1021/
la901641f.
[69] Chauhan, V., Singh, S., Kamboj, R., Mishra, R., Kaur, G. Self-assembly, DNA binding and cytotoxicity trends of ether functionalized gemini pyridinium amphiphiles, J Colloid Interface Sci. 2014, 417, 385–95. doi:10.1016/j.jcis.2013.11.059.
[70] Chauhan, V., Singh, S., Kaur, T., Kaur, G. Self-Assembly and Biophysical Properties of Gemini 3-Alkyloxypyridinium Amphiphiles with a Hydroxyl-Substituted Spacer, Langmuir. 2015, 31, 2956–66. doi:10.1021/la5045267.
[71] Patial, P., Shaheen, A., Ahmad, I. Gemini Pyridinium Surfactants: Synthesis and Their Surface Active Properties, J Surfactants Deterg. 2014, 17, 929–35. doi:10.1007/s11743-014-1563-8.
[72] Bhadani, A., Endo, T., Koura, S., Sakai, K., Abe, M., Sakai, H. Self-Aggregation and Liquid Crystalline Behaviour of New Ester-Functionalized Quinuclidinolium Surfactants, Langmuir. 2014, 30, 9036–44. doi:10.1021/la502098h.
[73] Bodor, N., Kaminski, J.J., Selk, S. Soft drugs. 1. Labile quaternary aminium salts as soft antimicrobials, J Med Chem. 1980, 23, 469–74. doi:10.1021/jm00179a001.
[74] Bodor, N., Kaminski, J.J. Soft drugs. 2. Soft alkylating compounds as potential antitumor agents, J Med Chem. 1980, 23, 566–9. doi:10.1021/jm00179a018.
[75] Devínsky, F., Masárová, Ľ., Lacko, I., Mlynarčík, D. Structure-activity relationships of “soft” quaternary aminium amphiphiles, J Biopharm Sci. 1991, 2, 1–10.
[76] Para, G., Łuczyński, J., Palus, J., Jarek, E., Wilk, K.A., Warszyński, P. Hydrolysis driven surface activity of esterquat surfactants, J Colloid Interface Sci. 2016, 465, 174–82. doi:10.1016/
j.jcis.2015.11.056.
[77] Shearman, G.C., Ugazio, S., Soubiran, L., Hubbard, J., Ces, O., Seddon, J.M., Templer, R.H. The lyotropic phase behaviour of ester quaternary surfactants, J Colloid Interface Sci. 2009, 331, 463–9. doi:10.1016/j.jcis.2008.11.055.
[78] Pisárčik, M., Polakovičová, M., Devínsky, F., Lacko, I. Dynamic Light Scattering, Interfacial Properties, and Conformational Analysis of Biodegradable Quarternary Aminium Surfactants, Langmuir. 2006, 22, 9160–8. doi:10.1021/la0613934.
[79] Pisárčik, M., Devínsky, F., Lacko, I. Dynamic light scattering and micelle shape analysis of gemini surfactants, Acta Fac Pharm Univ Comen. 2004, 51, 173–81.
[80] Pisárčik, M., Polakovičová, M., Pupák, M., Devínsky, F., Lacko, I. Biodegradable gemini surfactants. Correlation of area per surfactant molecule with surfactant structure, J Colloid Interface Sci. 2009, 329, 153–9. doi:10.1016/j.jcis.2008.10.016.

[81] Pisárčik, M., Pupák, M., Devínsky, F., Almásy, L., Tian, Q., Bukovský, M. Urea-based gemini surfactants: Synthesis, aggregation behaviour and biological activity, Colloids Surf Physicochem Eng Asp. 2016, 497, 385–96. doi:10.1016/j.colsurfa.2016.03.028.
[82] Yilgör, E., Burgaz, E., Yurtsever, E., Yilgör, İ. Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers, Polymer. 2000, 41, 849–57. doi:10.1016/S0032-3861(99)00245-1.
[83] Bordes, R., Tropsch, J., Holmberg, K. Role of an Amide Bond for Self-Assembly of Surfactants, Langmuir. 2010, 26, 3077–83. doi:10.1021/la902979m.
[84] Faig, A., Arthur, T.D., Fitzgerald, P.O., Chikindas, M., Mintzer, E., Uhrich, K.E. Biscationic Tartaric Acid-Based Amphiphiles: Charge Location Impacts Antimicrobial Activity, Langmuir. 2015, 31, 11875–85. doi:10.1021/acs.langmuir.5b03347.
[85] Hoque, J., Akkapeddi, P., Yarlagadda, V., Uppu, D.S.S.M., Kumar, P., Haldar, J. Cleavable Cationic Antibacterial Amphiphiles: Synthesis, Mechanism of Action, and Cytotoxicities, Langmuir. 2012, 28, 12225–34. doi:10.1021/la302303d.
[86] Devínsky, F., Masárová, Ľ., Lacko, I. Surface activity and micelle formation of some new bisquaternary aminium salts, J Colloid Interface Sci. 1985, 105, 235–9. doi:10.1016/0021-9797(85)90363-7.
[87] Tehrani-Bagha, A.R., Singh, R.G., Holmberg, K. Solubilization of two organic dyes by cationic ester-containing gemini surfactants, J Colloid Interface Sci. 2012, 376, 112–8. doi:10.1016/ j.jcis.2012.02.016.
[88] Tehrani-Bagha, A.R., Kärnbratt, J., Löfroth, J.-E., Holmberg, K. Cationic ester-containing gemini surfactants: Determination of aggregation numbers by time-resolved fluorescence quenching, J Colloid Interface Sci. 2012, 376, 126–32. doi:10.1016
/j.jcis.2012.02.053.

[89] Pavlíková, M., Lacko, I., Devínsky, F., Mlynarčík, D. Quantitative Relationships Between Structure, Aggregation Properties and Antimicrobial Activity of Quaternary Aminium Bolaamphiphiles, Collect Czechoslov Chem Commun. 1995, 60, 1213–28. doi:10.1135/cccc19951213.
[90] Pavlíková-Mořická, M., Lacko, I., Devínsky, F., Masárová, L., Mlynarčík, D. Quantitative relationships between structure and antimicrobial activity of new “Soft” bisquaternary aminium salts, Folia Microbiol (Praha). 1994, 39, 176–80. doi:10.1007/ BF02814644.
[91] Yousuf, S., Akram, M., Kabir-ud-Din. Effect of salt additives on the aggregation behaviour and morphology of 14-E2-14, Colloids Surf Physicochem Eng Asp. 2014, 463, 8–17. doi:10.1016/ j.colsurfa.2014.09.026.
[92] Kabir-ud-Din, Yaseen, Z., Aswal, V.K., Dar, A.A. Rheological response and small-angle neutron-scattering study of diester-bonded cationic biodegradable gemini surfactants in presence of different additives, Colloid Polym Sci. 2014, 292, 3113–25. doi:10.1007/s00396-014-3348-z.
[93] Zhang, Z., Zheng, P., Guo, Y., Yang, Y., Chen, Z., Wang, X., An, X., Shen, W. The effect of the spacer rigidity on the aggregation behaviour of two ester-containing Gemini surfactants, J Colloid Interface Sci. 2012, 379, 64–71. doi:10.1016/j.jcis.2012.04.052.
[94] Bhadani, A., Endo, T., Sakai, K., Sakai, H., Abe, M. Synthesis and dilute aqueous solution properties of ester functionalized cationic gemini surfactants having different ethylene oxide units as spacer, Colloid Polym Sci. 2014, 292, 1685–92. doi:10.1007/s00396-014-3233-9.
[95] Kuo, C.-F.J., Lin, L.-H., Dong, M.-Y., Chang, W.-S., Chen, K.-M. Preparation and Properties of New Ester-Linked Cleavable Gemini Surfactants, J Surfactants Deterg. 2011, 14, 195–201. doi:10.1007/s11743-010-1232-5.

Chapter 5

[1] Ostroumov, S.A. Biological Effects of Surfactants. CRC Press, Taylor & Francis; 2006.
[2] Cross, J., Singer, E.J. Cationic Surfactants: Analytical and Biological Evaluation. CRC Press; 1994.
[3] Jungermann, E. Cationic surfactants. New York: M. Dekker; 1970.
[4] Devínsky, F., Kopecka-Leitmanová, A., Sersen, F., Balgavý, P. Cut-off effect in antimicrobial activity and in membrane perturbation efficiency of the homologous series of N,N-dimethylalkylamine oxides, J Pharm Pharmacol. 1990, 42, 790–4.
[5] Devínsky, F., Lacko, I., Mlynarčík, D., Švajdlenka, E., Masárová, Ľ. QSAR of monoquaternary surface active antimicrobials: The parabolic and the bilinear case, Acta Fac Pharm. 1990, 30, 127–44.
[6] Devínsky, F., Masárová, Ľ., Lacko, I., Mlynarčík, D. Structure - activity relationships of “soft” quaternary ammonium amphiphiles, J Biopharm Sci. 1991, 2, 1–10.
[7] Devínsky, F., Lacko, I., Mlynarčík, D., Švajdlenka, E., Borovská, V. Quaternary ammonium-salts. 33. QSAR of antimicrobially active Niketamide derivatives, Chemical Papers. 1990, 44, 159–70.
[8] Pavlíková, M., Lacko, I., Devínsky, F., Mlynarčík, D. Quantitative Relationships Between Structure, Aggregation Properties and Antimicrobial Activity of Quaternary Ammonium Bolaamphiphiles, Collection of Czechoslovak Chemical Communications. 1995, 60, 1213–28. doi:10.1135/cccc19951213.
[9] Pavlíková-Morická, M., Lacko, I., Devínsky, F., Masárová, L., Mlynarčík, D. Quantitative relationships between structure and antimicrobial activity of new “soft” bisquaternary ammonium salts, Folia Microbiol (Praha). 1994, 39, 176–80.
[10] Ancelin, M.L., Calas, M., Bonhoure, A., Herbute, S., Vial, H.J. In Vivo Antimalarial Activities of Mono- and Bis Quaternary Ammonium Salts Interfering with Plasmodium Phospholipid Metabolism, Antimicrobial Agents and Chemotherapy. 2003, 47, 2598–605. doi:10.1128/AAC.47.8.2598-2605.2003.
[11] Choubey, V., Maity, P., Guha, M., Kumar, S., Srivastava, K., Puri, S.K., Bandyopadhyay, U. Inhibition of Plasmodium falciparum Choline Kinase by Hexadecyltrimethylammonium Bromide: a Possible Antimalarial Mechanism, Antimicrobial Agents and Chemotherapy. 2007, 51, 696–706. doi:10.1128/AAC.00919-06.
[12] Yip, K.W., Mao, X., Au, P.Y.B., Hedley, D.W., Chow, S., Dalili, S., Mocanu, J.D., Bastianutto, C., Schimmer, A., Liu, F.-F. Benzethonium Chloride: A Novel Anticancer Agent Identified by Using a Cell-Based Small-Molecule Screen, Clinical Cancer Research. 2006, 12, 5557–69. doi:10.1158/1078-0432.CCR-06-0536.
[13] Lukáč, M., Mrva, M., Garajová, M., Mojžišová, G., Varinská, L., Mojžiš, J., Sabol, M., Kubincová, J., Haragová, H., Ondriska, F., Devínsky, F. Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, hexadecylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride, European Journal of Medicinal Chemistry. 2013, 66, 46–55. doi:10.1016/
j.ejmech.2013.05.033.
[14] Ferenčík, M., Lacko, I., Devínsky, F. Immunomodulatory activity of some amphiphilic compounds, Pharmazie. 1990, 45, 695–6.
[15] Gyermek, L., Lee, C., Cho, Y.-M., Nguyen, N. Quaternary derivatives of granatanol diesters: Potent, ultrashort acting non-depolarizing neuromuscular relaxants, Life Sciences. 2006, 79, 559–69. doi:10.1016/j.lfs.2006.01.038.
[16] Wood, S.J., MacKenzie, L., Maleeff, B., Hurle, M.R., Wetzel, R. Selective inhibition of Abeta fibril formation, J Biol Chem. 1996, 271, 4086–92.
[17] Li, Y., Cao, M., Wang, Y. Alzheimer Amyloid β(1−40) Peptide: Interactions with Cationic Gemini and Single-Chain Surfactants, The Journal of Physical Chemistry B. 2006, 110, 18040–5. doi:10.1021/
jp063176h.

[18] Rook, Y., Schmidtke, K.-U., Gaube, F., Schepmann, D., Wünsch, B., Heilmann, J., Lehmann, J., Winckler, T. Bivalent β-Carbolines as Potential Multitarget Anti-Alzheimer Agents, Journal of Medicinal Chemistry. 2010, 53, 3611–7. doi:10.1021/jm1000024.
[19] Zheng, F., Bayram, E., Sumithran, S.P., Ayers, J.T., Zhan, C.-G., Schmitt, J.D., Dwoskin, L.P., Crooks, P.A. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release, Bioorganic & Medicinal Chemistry. 2006, 14, 3017–37. doi:10.1016/j.bmc.2005.12.036.
[20] Zheng, G., Sumithran, S.P., Deaciuc, A.G., Dwoskin, L.P., Crooks, P.A. tris-Azaaromatic quaternary ammonium salts: Novel templates as antagonists at nicotinic receptors mediating nicotine-evoked dopamine release, Bioorganic & Medicinal Chemistry Letters. 2007, 17, 6701–6. doi:10.1016/j.bmcl.2007.10.062.
[21] Ryhänen, S.J., Säily, M.J., Paukku, T., Borocci, S., Mancini, G., Holopainen, J.M., Kinnunen, P.K.J. Surface Charge Density Determines the Efficiency of Cationic Gemini Surfactant Based Lipofection, Biophysical Journal. 2003, 84, 578–87. doi:10.1016/S0006-3495(03)74878-4.
[22] Uhríková, D., Zajac, I., Dubničková, M., Pisárčik, M., Funari, S.S., Rapp, G., Balgavý, P. Interaction of gemini surfactants butane-1,4-diyl-bis(alkyldimethylammonium bromide) with DNA, Colloids and Surfaces B: Biointerfaces. 2005, 42, 59–68. doi:10.1016/j.colsurfb. 2005.02.002.
[23] Uhrıìková, D., Hanulová, M., Funari, S.S., Lacko, I., Devıìnsky, F., Balgavý, P. The structure of DNA–DLPC–cationic gemini surfactant aggregates: a small angle synchrotron X-ray diffraction study, Biophysical Chemistry. 2004, 111, 197–204. doi:10.1016/ j.bpc.2004.05.012.

[24] Byk, G., Dubertret, C., Escriou, V., Frederic, M., Jaslin, G., Rangara, R., Pitard, B., Crouzet, J., Wils, P., Schwartz, B., Scherman, D. Synthesis, activity, and structure--activity relationship studies of novel cationic lipids for DNA transfer, J Med Chem. 1998, 41, 229–35.
[25] Rezaee, M., Oskuee, R.K., Nassirli, H., Malaekeh-Nikouei, B. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems, Journal of Controlled Release. 2016, 236, 1–14. doi:10.1016/j.jconrel.2016.06.023.
[26] Benein, P., Almuteri, M.A., Mehanna, A.S., D’Souza, G.G.M. Synthesis of Triphenylphosphonium Phospholipid Conjugates for the Preparation of Mitochondriotropic Liposomes. In: Weissig V, Edeas M, editors. Mitochondrial Medicine, vol. 1265, New York, NY: Springer New York; 2015, p. 51–7.
[27] Chakraborty, A., Jana, N.R. Design and Synthesis of Triphenylphosphonium Functionalized Nanoparticle Probe for Mitochondria Targeting and Imaging, The Journal of Physical Chemistry C. 2015, 150127145409002. doi:10.1021/jp511870e.
[28] Vayalil, P.K., Oh, J.-Y., Zhou, F., Diers, A.R., Smith, M.R., Golzarian, H., Oliver, P.G., Smith, R.A.J., Murphy, M.P., Velu, S.E., Landar, A. A Novel Class of Mitochondria-Targeted Soft Electrophiles Modifies Mitochondrial Proteins and Inhibits Mitochondrial Metabolism in Breast Cancer Cells through Redox Mechanisms, PLOS ONE. 2015, 10, e0120460. doi:10.1371/journal.pone.0120460.
[29] Attwood, D., Mosquera, V., Garcia, M., Suarez, M.J., Sarmiento, F. A Comparison of the Micellar Properties of Structurally Related Antidepressant Drugs, Journal of Colloid and Interface Science. 1995, 175, 201–6. doi:10.1006/jcis.1995.1446.
[30] Somasundaran, P. Encyclopedia of Surface and Colloid Science. CRC Press; 2006.
[31] Attwood, D., Natarajan, R. Effect of pH on the micellar properties of amphiphilic drugs in aqueous solution, J Pharm Pharmacol. 1981, 33, 136–40.
[32] Domag, G. A new class of disinfectants, Dtsch Med Wochenschr. 1935, 61, 829–32.
[33] Jacobs, W.A., Heilderberg, M. The quaternary salts of hexamethylenetetramine: I. Substituted benzyl halides and the hexamethylenetetraminium salts derived thereform, J Biol Chem. 1915, 20, 659–83.
[34] Jacobs, W.A. The bactericidal properties of the quaternary salts of hexamethylenetetramine: I. The problem of the chemotherapy of experimental bacterial infections, Journal of Experimental Medicine. 1916, 23, 563–8. doi:10.1084/jem.23.5.563.
[35] Jacobs, W.A., Heilderberg, M., Bull, C.G. The bactericidal properties of the quaternary salts of hexamethylenetetramine: III. The relation between constitution and bactericidal action in the quaternary salts obtained from halogenacetyl compounds, Journal of Experimental Medicine. 1916, 23, 577–99. doi:10.1084/jem.23.5.577.
[36] Jacobs, W.A., Heilderberg, M., Amoss, H.L. The bactericidal properties of the quaternary salts of hexamethylenetetramine: II. The relation betweenconstitution and bactericidal action in the substituted benzylhexamethylenetetraminium salts, Journal of Experimental Medicine. 1916, 23, 569–76. doi:10.1084/jem.23.5.569.
[37] Nikitina, E.V., Zeldi, M.I., Pugachev, M.V., Sapozhnikov, S.V., Shtyrlin, N.V., Kuznetsova, S.V., Evtygin, V.E., Bogachev, M.I., Kayumov, A.R., Shtyrlin, Y.G. Antibacterial effects of quaternary bis-phosphonium and ammonium salts of pyridoxine on Staphylococcus aureus cells: A single base hitting two distinct targets?, World Journal of Microbiology and Biotechnology. 2016, 32. doi:10.1007/s11274-015-1969-0.
[38] Pugachev, M.V., Shtyrlin, N.V., Sysoeva, L.P., Nikitina, E.V., Abdullin, T.I., Iksanova, A.G., Ilaeva, A.A., Musin, R.Z., Berdnikov, E.A., Shtyrlin, Y.G. Synthesis and antibacterial activity of novel phosphonium salts on the basis of pyridoxine, Bioorganic & Medicinal Chemistry. 2013, 21, 4388–95. doi:10.1016/
j.bmc.2013.04.051.
[39] Kanazawa, A., Ikeda, T., Endo, T. Synthesis and antimicrobial activity of dimethyl- and trimethyl-substituted phosphonium salts with alkyl chains of various lengths., Antimicrob Agents Chemother. 1994, 38, 945–52.
[40] Lukáč, M., Devínsky, F., Papapetropoulou, A., Bukovský, M., Horváth, B. Novel phospholium type cationic surfactants: synthesis, aggregation properties and antimicrobial activity, Journal of Surfactants and Detergents. 2017. doi:10.1007/s11743-016-1908-6.
[41] Luque-Ortega, J.R., Reuther, P., Rivas, L., Dardonville, C. New Benzophenone-Derived Bisphosphonium Salts as Leishmanicidal Leads Targeting Mitochondria through Inhibition of Respiratory Complex II, Journal of Medicinal Chemistry. 2010, 53, 1788–98. doi:10.1021/jm901677h.
[42] Taladriz, A., Healy, A., Flores Pérez, E.J., Herrero García, V., Ríos Martínez, C., Alkhaldi, A.A.M., Eze, A.A., Kaiser, M., de Koning, H.P., Chana, A., Dardonville, C. Synthesis and Structure–Activity Analysis of New Phosphonium Salts with Potent Activity against African Trypanosomes, Journal of Medicinal Chemistry. 2012, 55, 2606–22. doi:10.1021/jm2014259.
[43] Piecuch, A., Obłąk, E., Guz-Regner, K. Antibacterial Activity of Alanine-Derived Gemini Quaternary Ammonium Compounds, Journal of Surfactants and Detergents. 2016, 19, 275–82. doi:10.1007/s11743-015-1778-3.
[44] Fu, S.Q., Guo, J.W., Zhong, X., Yang, Z., Lai, X.F. Synthesis, physiochemical property and antibacterial activity of gemini quaternary ammonium salts with a rigid spacer, RSC Adv. 2016, 6, 16507–15. doi:10.1039/C5RA22368G.
[45] Fosso, M.Y., Shrestha, S.K., Green, K.D., Garneau-Tsodikova, S. Synthesis and Bioactivities of Kanamycin B-Derived Cationic Amphiphiles, Journal of Medicinal Chemistry. 2015, 58, 9124–32. doi:10.1021/acs.jmedchem.5b01375.

[46] Devínský, F., Masárová, Ľ., Lacko, I., Mlynarčík, D. Synthesis, IR spectra, and antimicrobial activity of some bis-ammonium salts of N,N’-bis(2-dimethylaminoethyl)methylamine, Collection of Czechoslovak Chemical Communications. 1984, 49, 2819–27. doi:10.1135/cccc19842819.
[47] Mikláš, R., Miklášová, N., Bukovský, M., Devínsky, F. Synthesis and antimicrobial properties of camphorsulfonic acid derived imidazolium salts, Acta Facultatis Pharmaceuticae Universitatis Comenianae. 2014, 61. doi:10.2478/afpuc-2014-0007.
[48] Pisárčik, M., Pupák, M., Devínsky, F., Almásy, L., Tian, Q., Bukovský, M. Urea-based gemini surfactants: Synthesis, aggregation behaviour and biological activity, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016, 497, 385–96. doi:10.1016/j.colsurfa.2016.03.028.
[49] Migahed, M.A., Negm, N.A., Shaban, M.M., Ali, T.A., Fadda, A.A. Synthesis, Characterization, Surface and Biological Activity of Diquaternary Cationic Surfactants Containing Ester Linkage, Journal of Surfactants and Detergents. 2016, 19, 119–28. doi:10.1007/s11743-015-1749-8.
[50] Prasad, S., Kumar, S., Kumar, B., Singh, A.K., Gautam, H.K., Sharma, S.K. Quaternary ammonium and amido derivatives of pyranochromenones and chromenones: synthesis and antimicrobial activity evaluation, Medicinal Chemistry Research. 2015, 24, 2297–313. doi:10.1007/s00044-014-1294-4.
[51] Čupková, V., Mlynarčík, D., Devínsky, F., Lacko, I. The effect of quaternary ammonium compounds and amine oxides on spores of Bacillus cereus, Folia Microbiol (Praha). 1981, 26, 189–95.
[52] Shaban, S.M., Aiad, I., El-Sukkary, M.M., Soliman, E.A., El-Awady, M.Y. Surface and biological activity of N-(((dimethoxybenzylidene)
amino)propyl)-N,N-dimethylalkyl-1-ammonium derivatives as cationic surfactants, Journal of Molecular Liquids. 2015, 207, 256–65. doi:10.1016/j.molliq.2015.03.043.

[53] Elkholy, Y.S., Hegab, A.S., Ismail, D.K., Hassan, R.M. Evaluation of a novel commercial quaternary ammonium compound for eradication of Mycobacteria, HCV and HBV in Egypt, Journal of Microbiology. 2016, 54, 39–43. doi:10.1007/s12275-016-5530-0.
[54] Inácio, Â.S., Domingues, N.S., Nunes, A., Martins, P.T., Moreno, M.J., Estronca, L.M., Fernandes, R., Moreno, A.J.M., Borrego, M.J., Gomes, J.P., Vaz, W.L.C., Vieira, O.V. Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: mechanisms of action and clinical implications in antibacterial prophylaxis, J Antimicrob Chemother. 2016, 71, 641–54. doi:10.1093/jac/dkv405.
[55] Inácio, Â.S., Nunes, A., Milho, C., Mota, L.J., Borrego, M.J., Gomes, J.P., Vaz, W.L.C., Vieira, O.V. In Vitro Activity of Quaternary Ammonium Surfactants against Streptococcal, Chlamydial, and Gonococcal Infective Agents, Antimicrob Agents Chemother. 2016, 60, 3323–32. doi:10.1128/AAC.00166-16.
[56] Basilico, N., Migotto, M., Ilboudo, D.P., Taramelli, D., Stradi, R., Pini, E. Modified quaternary ammonium salts as potential antimalarial agents, Bioorganic & Medicinal Chemistry. 2015, 23, 4681–7. doi:10.1016/j.bmc.2015.05.055.
[57] Peyrottes, S., Caldarelli, S., Wein, S., Périgaud, C., Pellet, A., Vial, H. Choline analogues in malaria chemotherapy, Curr Pharm Des. 2012, 18, 3454–66.
[58] Calas, M., Ouattara, M., Piquet, G., Ziora, Z., Bordat, Y., Ancelin, M.L., Escale, R., Vial, H. Potent Antimalarial Activity of 2-Aminopyridinium Salts, Amidines, and Guanidines, Journal of Medicinal Chemistry. 2007, 50, 6307–15. doi:10.1021/jm0704752.
[59] Bahamontes-Rosa, N., Robin, A., Ambrosio, A.R., Messias-Reason, I., Beitz, E., Flitsch, S.L., Kun, J.F.J. Monoquaternary ammonium derivatives inhibit growth of protozoan parasites, Parasitology International. 2008, 57, 132–7. doi:10.1016/j.parint.2007.09.006.

[60] Duque-Benítez, S., Ríos-Vásquez, L., Ocampo-Cardona, R., Cedeño, D., Jones, M., Vélez, I., Robledo, S. Synthesis of Novel Quaternary Ammonium Salts and Their in Vitro Antileishmanial Activity and U-937 Cell Cytotoxicity, Molecules. 2016, 21, 381. doi:10.3390/molecules21040381.
[61] Dardonville, C., Alkhaldi, A.A.M., De Koning, H.P. SAR Studies of Diphenyl Cationic Trypanocides: Superior Activity of Phosphonium over Ammonium Salts, ACS Medicinal Chemistry Letters. 2015, 6, 151–5. doi:10.1021/ml500408d.
[62] Lukáč, M., Mojžiš, J., Mojžišová, G., Mrva, M., Ondriska, F., Valentová, J., Lacko, I., Bukovský, M., Devínsky, F., Karlovská, J. Dialkylamino and nitrogen heterocyclic analogues of hexadecylphosphocholine and cetyltrimetylammonium bromide: Effect of phosphate group and environment of the ammonium cation on their biological activity, European Journal of Medicinal Chemistry. 2009, 44, 4970–7. doi:10.1016/j.ejmech.2009.08.011.
[63] Devínsky, F., Lacko, I., Bittererová, F., Mlynarčík, D. Quaternary ammonium-salts. 18. Preparation and relationship between structure, IR spectral characteristics, and antimicrobial activity of some new bis-quaternary isosters of 1,5-pentanediammonium dibromides, Chemical Papers. 1987, 41, 803–14.
[64] Gilbert, P., Moore, L.E. Cationic antiseptics: diversity of action under a common epithet, Journal of Applied Microbiology. 2005, 99, 703–15. doi:10.1111/j.1365-2672.2005.02664.x.
[65] Gallová, J., Devínsky, F., Balgavý, P. Interaction of surfactants with model and biological membranes. II. Effect of N-alkyl-N,N,N-trimethylammonium ions on phosphatidylcholine bilayers as studied by spin probe ESR, Chem Phys Lipids. 1990, 53, 231–41.
[66] Mlynarčík, D., Sirotková, L., Devínsky, F., Masárová, Ľ., Pikulíková, A., Lacko, I. Potassium leakage from Escherichia coli cells treated by organic ammonium salts, Journal of Basic Microbiology. 1992, 32, 43–7. doi:10.1002/jobm.3620320113.

[67] Šeršeň, F., Leitmanová, A., Devínsky, F., Lacko, I., Balgavý, P. A spin label study of perturbation effects of N-(1-methyldodecyl)-N,N, N-trimethylammonium bromide and N-(1-methyldodecyl)-N,N-dimethylamine oxide on model membranes prepared from Escherichia coli-isolated lipids, Gen Physiol Biophys. 1989, 8, 133–56.
[68] Denyer, S.P., Hugo, W.B. The mode of action of tetradecyltrimethyl ammnium bromide (CTAB) on Staphylococcus aureus, Journal of Pharmacy and Pharmacology. 1977, 29, 66P–66P. doi:10.1111/j.2042-7158.1977.tb11534.x.
[69] Maillard, J.-Y. Bacterial target sites for biocide action, J Appl Microbiol. 2002, 92 Suppl, 16S–27S.
[70] Yang, J. Fate and effect of alkyl benzyl dimethyl ammonium chloride in mixed aerobic and nitrifying cultures. Thesis. Georgia Institute of Technology, 2007.
[71] Walton, J.T., Hill, D.J., Protheroe, R.G., Nevill, A., Gibson, H. Investigation into the effect of detergents on disinfectant susceptibility of attached Escherichia coli and Listeria monocytogenes, Journal of Applied Microbiology. 2008, 105, 309–15. doi:10.1111/j.1365-2672.2008.03805.x.
[72] Bjergbaek, L.A., Haagensen, J.A.J., Molin, S., Roslev, P. Effect of oxygen limitation and starvation on the benzalkonium chloride susceptibility of Escherichia coli, Journal of Applied Microbiology. 2008, 105, 1310–7. doi:10.1111/j.1365-2672.2008.03901.x.
[73] Russell, A.D. Similarities and differences in the responses of microorganisms to biocides, Journal of Antimicrobial Chemotherapy. 2003, 52, 750–63. doi:10.1093/jac/dkg422.
[74] Shirai, A., Maeda, T., Nagamune, H., Matsuki, H., Kaneshina, S., Kourai, H. Biological and physicochemical properties of gemini quaternary ammonium compounds in which the positions of a cross-linking sulfur in the spacer differ, European Journal of Medicinal Chemistry. 2005, 40, 113–23. doi:10.1016/j.ejmech.2004.09.015.

[75] Thebault, P., Taffin de Givenchy, E., Levy, R., Vandenberghe, Y., Guittard, F., Géribaldi, S. Preparation and antimicrobial behaviour of quaternary ammonium thiol derivatives able to be grafted on metal surfaces, European Journal of Medicinal Chemistry. 2009, 44, 717–24. doi:10.1016/j.ejmech.2008.05.007.
[76] Block, S.S. Disinfection, Sterilization, and Preservation. Lippincott Williams & Wilkins; 2001.
[77] Devinsky, F., Lacko, I., Mlynarcik, D., Racansky, V., Krasnec, L. Relationship between critical micelle concentrations and minimum inhibitory concentrations for some non-aromatic quaternary ammonium salts and amine oxides, ResearchGate. 1985, 22, 10–5.
[78] Balgavý, P., Devínsky, F. Cut-off effects in biological activities of surfactants, Adv Colloid Interface Sci. 1996, 66, 23–63.
[79] Pringle, M.J., Brown, K.B., Miller, K.W. Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols?, Mol Pharmacol. 1981, 19, 49–55.
[80] Ferguson, J. The Use of Chemical Potentials as Indices of Toxicity, Proceedings of the Royal Society B: Biological Sciences. 1939, 127, 387–404. doi:10.1098/rspb.1939.0030.
[81] Janoff, A.S., Pringle, M.J., Miller, K.W. Correlation of general anesthetic potency with solubility in membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes. 1981, 649, 125–8. doi:10.1016/0005-2736(81)90017-1.
[82] Franks, N.P., Lieb, W.R. Do general anaesthetics act by competitive binding to specific receptors?, Nature. 1984, 310, 599–601. doi:10.1038/310599a0.
[83] Franks, N.P., Lieb, W.R. Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia, Proc Natl Acad Sci USA. 1986, 83, 5116–20.
[84] Richards, C.D., Martin, K., Gregory, S., Keightley, C.A., Hesketh, T.R., Smith, G.A., Warren, G.B., Metcalfe, J.C. Degenerate perturbations of protein structure as the mechanism of anaesthetic action, Nature. 1978, 276, 775–9.
[85] Andriamainty, F., Filípek, J., Kovács, P., Balgavý, P. Effect of local anesthetic [2-(alkyloxy)phenyl]-2-(1-piperidinyl)ethyl esters of carbamic acid on the activity of purified sarcoplasmic reticulum (Ca-Mg)ATPase, Pharmazie. 1996, 51, 242–5.
[86] Rosen, M.J. Surfactants and Interfacial Phenomena. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2004.
[87] Devínsky, F., Zámocka, J., Lacko, I., Polakovicova, M. QSAR and CAMM study of amphiphilic antimicrobially active 2,2’-bipyridyl monoammonium salts, Pharmazie. 1996, 51, 727–31.
[88] Joondan, N., Caumul, P., Akerman, M., Jhaumeer-Laulloo, S. Synthesis, micellisation and interaction of novel quaternary ammonium compounds derived from l-Phenylalanine with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine as model membrane in relation to their antibacterial activity, and their selectivity over human red blood cells, Bioorganic Chemistry. 2015, 58, 117–29. doi:10.1016/j.bioorg.2015.01.001.
[89] Lukáč, M., Lacko, I., Bukovský, M., Kyselová, Z., Karlovská, J., Horváth, B., Devínsky, F. Synthesis and antimicrobial activity of a series of optically active quaternary ammonium salts derived from phenylalanine, Open Chemistry. 2010, 8. doi:10.2478/s11532-009-0126-8.
[90] Pernak, J., Skrzypczak, A. 3-Alkylthiomethyl-1-ethylimidazolium chlorides. Correlation between critical micelle concentrations and minimum inhibitory concentrations, European Journal of Medicinal Chemistry. 1996, 31, 901–3. doi:10.1016/S0223-5234(97)89853-4.
[91] Garcia, M.T., Ribosa, I., Perez, L., Manresa, A., Comelles, F. Aggregation Behavior and Antimicrobial Activity of Ester-Functionalized Imidazolium- and Pyridinium-Based Ionic Liquids in Aqueous Solution, Langmuir. 2013, 29, 2536–45. doi:10.1021/la304752e.

[92] Mikláš, R., Miklášová, N., Bukovský, M., Horváth, B., Kubincová, J., Devínsky, F. Synthesis, surface and antimicrobial properties of some quaternary ammonium homochiral camphor sulfonamides, European Journal of Pharmaceutical Sciences. 2014, 65, 29–37. doi:10.1016/j.ejps.2014.08.013.
[93] Csiba, I., Lacko, I., Bittererová, F., Mlynarčík, D. Organické amóniové soli. XX. Príprava agregačné vlastnosti a antimikróbna aktivita N-[(2-alkanoyloxy)etyl]-dodecyldimetyl-amónium a N-[(2alkanoylamido)etyl]-dodecyldimetylamóniumbromidov, Česk Farm. 1987, 36, 349–54.
[94] Csiba, I., Devínsky, F., Masárová, Ľ., Lacko, I. Organické amóniové soli. XLI. Príprava, agregačné vlastnosti a antimikróbna aktivita N-[2-(10-undecenoyloxy)etyl]-N,N,N-alkyldimetylamóniumbromidov, Česk Farm. 1991, 40, 148–51.
[95] Murguía, M.C., Vaillard, V.A., Sánchez, V.G., Conza, J.D., Grau, R.J. Synthesis, surface-active properties, and antimicrobial activities of new double-chain gemini surfactants, J Oleo Sci. 2008, 57, 301–8.
[96] Pałkowski, Ł., Błaszczyński, J., Skrzypczak, A., Błaszczak, J., Kozakowska, K., Wróblewska, J., Kożuszko, S., Gospodarek, E., Krysiński, J., Słowiński, R. Antimicrobial Activity and SAR Study of New Gemini Imidazolium-Based Chlorides, Chemical Biology & Drug Design. 2014, 83, 278–88. doi:10.1111/cbdd.12236.
[97] Kubinyi, H. Quantitative structure-activity relationships. IV. Non-linear dependence of biological activity on hydrophobic character: a new model, Arzneimittelforschung. 1976, 26, 1991–7.
[98] Kubinyi, H. Lipophilicity and biological acitivity. Drug transport and drug distribution in model systems and in biological systems, Arzneimittelforschung. 1979, 29, 1067–80.
[99] Devínsky, F., Lacko, I., Mlynarčík, D., Aggregation Properties as a Measure of Lipophilicity in QSAR Studies of Antimicrobially Active Amphiphiles. Barcelona: J.R. Prous Science Publ.; 1992.

[100] Menzel, T.M., Tischer, M., Francois, P., Nickel, J., Schrenzel, J., Bruhn, H., Albrecht, A., Lehmann, L., Holzgrabe, U., Ohlsen, K. Mode-of-Action Studies of the Novel Bisquaternary Bisnaphthalimide MT02 against Staphylococcus aureus, Antimicrobial Agents and Chemotherapy. 2011, 55, 311–20. doi:10.1128/AAC.00586-10.
[101] Tischer, M., Pradel, G., Ohlsen, K., Holzgrabe, U. Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions?, ChemMedChem. 2012, 7, 22–31. doi:10.1002/cmdc.201100404.
[102] Hamzé, A., Rubi, E., Arnal, P., Boisbrun, M., Carcel, C., Salom-Roig, X., Maynadier, M., Wein, S., Vial, H., Calas, M. Mono- and Bis-Thiazolium Salts Have Potent Antimalarial Activity, Journal of Medicinal Chemistry. 2005, 48, 3639–43. doi:10.1021/jm0492608.
[103] Nicolas, O., Margout, D., Taudon, N., Wein, S., Calas, M., Vial, H.J., Bressolle, F.M.M. Pharmacological Properties of a New Antimalarial Bisthiazolium Salt, T3, and a Corresponding Prodrug, TE3, Antimicrobial Agents and Chemotherapy. 2005, 49, 3631–9. doi:10.1128/AAC.49.9.3631-3639.2005.
[104] Dorlo, T.P.C., Balasegaram, M., Beijnen, J.H., de Vries, P.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis, Journal of Antimicrobial Chemotherapy. 2012, 67, 2576–97. doi:10.1093/jac/dks275.
[105] Faucher, J.-F., Morquin, D., Reynes, J., Chirouze, C., Hoen, B., Le Moing, V. Serial use of pentamidine and miltefosine for treating Leishmania infantum-HIV coinfection, Parasitology International. 2016, 65, 444–6. doi:10.1016/j.parint.2016.06.009.
[106] Saraiva, V.B., Gibaldi, D., Previato, J.O., Mendonca-Previato, L., Bozza, M.T., Freire-de-Lima, C.G., Heise, N. Proinflammatory and Cytotoxic Effects of Hexadecylphosphocholine (Miltefosine) against Drug-Resistant Strains of Trypanosoma cruzi, Antimicrobial Agents and Chemotherapy. 2002, 46, 3472–7. doi:10.1128/AAC.46.11. 3472-3477.2002.
[107] Luna, K.P., Hernández, I.P., Rueda, C.M., Zorro, M.M., Croft, S.L., Escobar, P. In vitro susceptibility of Trypanosoma cruzi strains from Santander, Colombia, to hexadecylphosphocholine (miltefosine), nifurtimox and benznidazole, Biomedica. 2009, 29, 448–55.
[108] Seifert, K., Duchene, M., Wernsdorfer, W.H., Kollaritsch, H., Scheiner, O., Wiedermann, G., Hottkowitz, T., Eibl, H. Effects of Miltefosine and Other Alkylphosphocholines on Human Intestinal Parasite Entamoeba histolytica, Antimicrobial Agents and Chemotherapy. 2001, 45, 1505–10. doi:10.1128/AAC.45.5.1505-1510.2001.
[109] Walochnik, J., Duchene, M., Seifert, K., Obwaller, A., Hottkowitz, T., Wiedermann, G., Eibl, H., Aspock, H. Cytotoxic Activities of Alkylphosphocholines against Clinical Isolates of Acanthamoeba spp., Antimicrobial Agents and Chemotherapy. 2002, 46, 695–701. doi:10.1128/AAC.46.3.695-701.2002.
[110] Aichelburg, A.C., Walochnik, J., Assadian, O., Prosch, H., Steuer, A., Perneczky, G., Visvesvara, G.S., Aspöck, H., Vetter, N. Successful Treatment of Disseminated Acanthamoeba sp. Infection with Miltefosine, Emerging Infectious Diseases. 2008, 14, 1743–6. doi:10.3201/eid1411.070854.
[111] Timko, L., Fischer-Fodor, E., Garajová, M., Mrva, M., Chereches, G., Ondriska, F., Bukovský, M., Lukáč, M., Karlovská, J., Kubincová, J., Devínsky, F. Synthesis of structural analogues of hexadecylphosphocholine and their antineoplastic, antimicrobial and amoebicidal activity, European Journal of Medicinal Chemistry. 2015, 93, 263–73. doi:10.1016/j.ejmech.2015.02.014.
[112] Schuster, F.L., Guglielmo, B.J., Visvesvara, G.S. In-Vitro Activity of Miltefosine and Voriconazole on Clinical Isolates of Free-Living Amebas: Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri, The Journal of Eukaryotic Microbiology. 2006, 53, 121–6. doi:10.1111/j.1550-7408.2005.00082.x.

[113] Gulve, N., Kimmerling, K., Johnston, A.D., Krueger, G.R., Ablashi, D.V., Prusty, B.K. Anti-herpesviral effects of a novel broad range anti-microbial quaternary ammonium silane, K21, Antiviral Research. 2016, 131, 166–73. doi:10.1016/j.antiviral.2016.05.004.
[114] Sokolova, A.S., Yarovaya, О.I., Shernyukov, А.V., Pokrovsky, М.A., Pokrovsky, А.G., Lavrinenko, V.A., Zarubaev, V.V., Tretiak, T.S., Anfimov, P.M., Kiselev, O.I., Beklemishev, A.B., Salakhutdinov, N.F. New quaternary ammonium camphor derivatives and their antiviral activity, genotoxic effects and cytotoxicity, Bioorganic & Medicinal Chemistry. 2013, 21, 6690–8. doi:10.1016/j.bmc.2013.08.014.
[115] Pan, Y., Wang, Z., Shao, D., Zheng, H., Chen, Y., Zheng, X., Zhang, M., Li, J., Li, F., Chen, L. CTAB induced mitochondrial apoptosis by activating the AMPK–p53 pathway in hepatocarcinoma cells, Toxicol Res. 2015, 4, 1359–65. doi:10.1039/C4TX00227J.
[116] Song, D., Yang, J.S., Kim, S.J., Kim, B.-K., Park, S.-K., Won, M., Lee, K., Kim, H.M., Choi, K.-Y., Lee, K., Han, G. Design, synthesis and biological evaluation of novel aliphatic amido/sulfonamido-quaternary ammonium salts as antitumor agents, Bioorganic & Medicinal Chemistry. 2013, 21, 788–94. doi:10.1016/ j.bmc.2012.11.027.
[117] Enomoto, R., Suzuki, C., Ohno, M., Ohasi, T., Futagami, R., Ishikawa, K., Komae, M., Nishino, T., Konishi, Y., Lee, E. Cationic Surfactants Induce Apoptosis in Normal and Cancer Cells, Annals of the New York Academy of Sciences. 2007, 1095, 1–6. doi:10.1196/annals.1397.001.
[118] Ito, E., Yip, K.W., Katz, D., Fonseca, S.B., Hedley, D.W., Chow, S., Xu, G.W., Wood, T.E., Bastianutto, C., Schimmer, A.D., Kelley, S.O., Liu, F.-F. Potential Use of Cetrimonium Bromide as an Apoptosis-Promoting Anticancer Agent for Head and Neck Cancer, Molecular Pharmacology. 2009, 76, 969–83. doi:10.1124/ mol.109.055277.

[119] Yang, J.S., Song, D., Ko, W.J., Kim, B., Kim, B.-K., Park, S.-K., Won, M., Lee, K., Lee, K., Kim, H.M., Han, G. Synthesis and biological evaluation of novel aliphatic amido-quaternary ammonium salts for anticancer chemotherapy: Part II, European Journal of Medicinal Chemistry. 2013, 63, 621–8. doi:10.1016/ j.ejmech.2012.12.063.
[120] Yang, J.S., Song, D., Ko, W.J., Kim, B., Kim, B.-K., Park, S.-K., Won, M., Lee, K., Lee, K., Kim, H.M., Han, G. Synthesis and biological evaluation of novel aliphatic amido-quaternary ammonium salts for anticancer chemotherapy: Part II, European Journal of Medicinal Chemistry. 2013, 63, 621–8. doi:10.1016/ j.ejmech.2012.12.063.
[121] Song, D., Yang, J.S., Oh, C., Cui, S., Kim, B.-K., Won, M., Lee, J., Kim, H.M., Han, G. New synthetic aliphatic sulfonamido-quaternary ammonium salts as anticancer chemotherapeutic agents, European Journal of Medicinal Chemistry. 2013, 69, 670–7. doi:10.1016/
j.ejmech.2013.09.022.
[122] Kumar, V., Malhotra, S.V. Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids, Bioorganic & Medicinal Chemistry Letters. 2009, 19, 4643–6. doi:10.1016/j.bmcl.2009.06.086.
[123] Ogura, K., Ishikawa, Y., Kaku, T., Nishiyama, T., Ohnuma, T., Muro, K., Hiratsuka, A. Quaternary ammonium-linked glucuronidation of trans-4-hydroxytamoxifen, an active metabolite of tamoxifen, by human liver microsomes and UDP-glucuronosyltransferase 1A4, Biochemical Pharmacology. 2006, 71, 1358–69. doi:10.1016/j.bcp.2006.01.004.
[124] Rivera-Guevara, C., Pérez-Alvarez, V., García-Becerra, R., Ordaz-Rosado, D., Morales-Ríos, M.S., Hernández-Gallegos, E., Cooney, A.J., Bravo-Gómez, M.E., Larrea, F., Camacho, J. Genomic action of permanently charged tamoxifen derivatives via estrogen receptor-α, Bioorganic & Medicinal Chemistry. 2010, 18, 5593–601. doi:10.1016/j.bmc.2010.06.039.
[125] Giraud, I., Rapp, M., Maurizis, J.-C., Madelmont, J.-C. Synthesis and in Vitro Evaluation of Quaternary Ammonium Derivatives of Chlorambucil and Melphalan, Anticancer Drugs Designed for the Chemotherapy of Chondrosarcoma, Journal of Medicinal Chemistry. 2002, 45, 2116–9. doi:10.1021/jm010926x.
[126] Peyrode, C., Weber, V., David, E., Vidal, A., Auzeloux, P., Communal, Y., Dauplat, M.M., Besse, S., Gouin, F., Heymann, D., Chezal, J.M., Rédini, F., Miot-Noirault, E. Quaternary ammonium-melphalan conjugate for anticancer therapy of chondrosarcoma: in vitro and in vivo preclinical studies, Investigational New Drugs. 2012, 30, 1782–90. doi:10.1007/s10637-011-9663-z.
[127] Shao, J., Zhang, F., Bai, Z., Wang, C., Yuan, Y., Wang, W. Synthesis and antitumor activity of emodin quaternary ammonium salt derivatives, European Journal of Medicinal Chemistry. 2012, 56, 308–19. doi:10.1016/j.ejmech.2012.07.047.
[128] Wang, W., Bai, Z., Zhang, F., Wang, C., Yuan, Y., Shao, J. Synthesis and biological activity evaluation of emodin quaternary ammonium salt derivatives as potential anticancer agents, European Journal of Medicinal Chemistry. 2012, 56, 320–31. doi:10.1016/j.ejmech.2012.07.051.
[129] Biedermann, D., Eignerova, B., Hajduch, M., Sarek, J. Synthesis and Evaluation of Biological Activity of the Quaternary Ammonium Salts of Lupane-, Oleanane-, and Ursane-Type Acids, Synthesis. 2010, 2010, 3839–48. doi:10.1055/s-0030-1258293.
[130] Wang, F., Ogasawara, M.A., Huang, P. Small mitochondria-targeting molecules as anti-cancer agents, Molecular Aspects of Medicine. 2010, 31, 75–92. doi:10.1016/j.mam.2009.12.003.
[131] Braña, M.F., Cacho, M., Gradillas, A., de Pascual-Teresa, B., Ramos, A. Intercalators as anticancer drugs, Curr Pharm Des. 2001, 7, 1745–80.
[132] Segal-Bendirdjian, E., Coulaud, D., Roques, B.P., Le Pecq, J.B. Selective loss of mitochondrial DNA after treatment of cells with ditercalinium (NSC 335153), an antitumor bis-intercalating agent, Cancer Res. 1988, 48, 4982–92.
[133] Mollinedo, F. Antitumor alkylphospholipid analogs: A promising and growing family of synthetic cell membrane-targeting molecules for cancer treatment, Anti-Cancer Agents in Medicinal Chemistry. 2014, 14, 495–8. doi:10.2174/1871520614999140313160011.
[134] Gajate, C., Mollinedo, F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts, Blood. 2007, 109, 711–9. doi:10.1182/blood-2006-04-016824.
[135] Hofmann, J., Oconnor, P.M., Jackman, J., Schubert, C., Ueberall, F., Kohn, K.W., Grunicke, H. The Protein Kinase C Inhibitor Ilmofosine (BM 41 440) Arrests Cells in G2 Phase and Suppresses CDC2 Kinase Activation Through a Mechanism Different from That of DNA Damaging Agents, Biochemical and Biophysical Research Communications. 1994, 199, 937–43. doi:10.1006/bbrc.1994.1319.
[136] Rudner, J., Ruiner, C.-E., Handrick, R., Eibl, H.-J., Belka, C., Jendrossek, V. The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation, Radiation Oncology. 2010, 5, 108. doi:10.1186/1748-717X-5-108.
[137] Jendrossek, V., Kugler, W., Erdlenbruch, B., Eibl, H., Lang, F., Lakomek, M. Erucylphosphocholine-induced apoptosis in chemoresistant glioblastoma cell lines: Involvement of caspase activation and mitochondrial alterations, Anticancer Research. 2001, 21, 3389–96.
[138] Babizhayev, M.A. Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma, BBA Clinical. 2016, 6, 49–68. doi:10.1016/j.bbacli.2016.04.004.
[139] Supinski, G.S., Murphy, M.P., Callahan, L.A. MitoQ administration prevents endotoxin-induced cardiac dysfunction, AJP: Regulatory, Integrative and Comparative Physiology. 2009, 297, R1095–102. doi:10.1152/ajpregu.90902.2008.
[140] Subramanian, S., Kalyanaraman, B., Migrino, R.Q. Mitochondrially targeted antioxidants for the treatment of cardiovascular diseases, Recent Pat Cardiovasc Drug Discov. 2010, 5, 54–65.
[141] Sandoval-Acuña, C., Fuentes-Retamal, S., Guzmán-Rivera, D., Peredo-Silva, L., Madrid-Rojas, M., Rebolledo, S., Castro-Castillo, V., Pavani, M., Catalán, M., Maya, J.D., Jara, J.A., Parra, E., Calaf, G.M., Speisky, H., Ferreira, J. Destabilization of mitochondrial functions as a target against breast cancer progression: Role of TPP+-linked-polyhydroxybenzoates, Toxicology and Applied Pharmacology. 2016, 309, 2–14. doi:10.1016/j.taap.2016.08.018.
[142] Jin, H., Kanthasamy, A., Ghosh, A., Anantharam, V., Kalyanaraman, B., Kanthasamy, A.G. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: Preclinical and clinical outcomes, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2014, 1842, 1282–94. doi:10.1016/j.bbadis.2013.09.007.
[143] Rokitskaya, T.I., Murphy, M.P., Skulachev, V.P., Antonenko, Y.N. Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes, Bioelectrochemistry. 2016, 111, 23–30. doi:10.1016/ j.bioelechem.2016.04.009.
[144] Jauslin, M.L. Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants, The FASEB Journal. 2003. doi:10.1096/fj.03-0240fje.
[145] Adlam, V.J. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury, The FASEB Journal. 2005, 19, 1088–95. doi:10.1096/fj.05-3718com.
[146] Mitchell, T., Rotaru, D., Saba, H., Smith, R.A.J., Murphy, M.P., MacMillan-Crow, L.A. The Mitochondria-Targeted Antioxidant Mitoquinone Protects against Cold Storage Injury of Renal Tubular Cells and Rat Kidneys, Journal of Pharmacology and Experimental Therapeutics. 2011, 336, 682–92. doi:10.1124/jpet.110.176743.

[147] Smith, R.A.J., Murphy, M.P. Animal and human studies with the mitochondria-targeted antioxidant MitoQ: Smith and Murphy, Annals of the New York Academy of Sciences. 2010, 1201, 96–103. doi:10.1111/j.1749-6632.2010.05627.x.
[148] Parajuli, N., Campbell, L.H., Marine, A., Brockbank, K.G.M., MacMillan-Crow, L.A. MitoQ Blunts Mitochondrial and Renal Damage during Cold Preservation of Porcine Kidneys, PLoS ONE. 2012, 7, e48590. doi:10.1371/journal.pone.0048590.
[149] Mukhopadhyay, P., Horváth, B., Zsengellér, Z., Zielonka, J., Tanchian, G., Holovac, E., Kechrid, M., Patel, V., Stillman, I.E., Parikh, S.M., Joseph, J., Kalyanaraman, B., Pacher, P. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy, Free Radical Biology and Medicine. 2012, 52, 497–506. doi:10.1016/ j.freeradbiomed.2011.11.001.
[150] Ojano-Dirain, C.P., Antonelli, P.J., Le Prell, C.G. Mitochondria-Targeted Antioxidant MitoQ Reduces Gentamicin-Induced Ototoxicity:, Otology & Neurotology. 2014, 35, 533–9. doi:10.1097/MAO.0000000000000192.
[151] Snow, B.J., Rolfe, F.L., Lockhart, M.M., Frampton, C.M., O’Sullivan, J.D., Fung, V., Smith, R.A.J., Murphy, M.P., Taylor, K.M. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease, Movement Disorders. 2010, 25, 1670–4. doi:10.1002/mds.23148.
[152] Gane, E.J., Weilert, F., Orr, D.W., Keogh, G.F., Gibson, M., Lockhart, M.M., Frampton, C.M., Taylor, K.M., Smith, R.A.J., Murphy, M.P. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients: Mitoquinone and liver damage, Liver International. 2010, 30, 1019–26. doi:10.1111/j.1478-3231.2010.02250.x.
[153] Murphy, M.P. Targeting lipophilic cations to mitochondria, Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2008, 1777, 1028–31. doi:10.1016/j.bbabio.2008.03.029.
[154] Jameson, V.J.A., Cochemé, H.M., Logan, A., Hanton, L.R., Smith, R.A.J., Murphy, M.P. Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants, Tetrahedron. 2015, 71, 8444–53. doi:10.1016/j.tet.2015.09.014.
[155] Brown, S.E., Ross, M.F., Sanjuan-Pla, A., Manas, A.-R.B., Smith, R.A.J., Murphy, M.P. Targeting lipoic acid to mitochondria: Synthesis and characterization of a triphenylphosphonium-conjugated α-lipoyl derivative, Free Radical Biology and Medicine. 2007, 42, 1766–80. doi:10.1016/j.freeradbiomed.2007.02.033.
[156] Antonenko, Y.N., Avetisyan, A.V., Bakeeva, L.E., Chernyak, B.V., Chertkov, V.A., Domnina, L.V., Ivanova, O.Y., Izyumov, D.S., Khailova, L.S., Klishin, S.S., Korshunova, G.A., Lyamzaev, K.G., Muntyan, M.S., Nepryakhina, O.K., Pashkovskaya, A.A., Pletjushkina, O.Y., Pustovidko, A.V., Roginsky, V.A., Rokitskaya, T.I., Ruuge, E.K., Saprunova, V.B., Severina, I.I., Simonyan, R.A., Skulachev, I.V., Skulachev, M.V., Sumbatyan, N.V., Sviryaeva, I.V., Tashlitsky, V.N., Vassiliev, J.M., Vyssokikh, M.Y., Yaguzhinsky, L.S., Zamyatnin, A.A., Skulachev, V.P. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry Mosc. 2008, 73, 1273–87.
[157] Finichiu, P.G., Larsen, D.S., Evans, C., Larsen, L., Bright, T.P., Robb, E.L., Trnka, J., Prime, T.A., James, A.M., Smith, R.A.J., Murphy, M.P. A mitochondria-targeted derivative of ascorbate: MitoC, Free Radical Biology and Medicine. 2015, 89, 668–78. doi:10.1016/j.freeradbiomed.2015.07.160.
[158] Millard, M., Gallagher, J.D., Olenyuk, B.Z., Neamati, N. A Selective Mitochondrial-Targeted Chlorambucil with Remarkable Cytotoxicity in Breast and Pancreatic Cancers, Journal of Medicinal Chemistry. 2013, 56, 9170–9. doi:10.1021/jm4012438.
[159] Murphy, M.P. Selective targeting of bioactive compounds to mitochondria, Trends in Biotechnology. 1997, 15, 326–30. doi:10.1016/S0167-7799(97)01068-8.
[160] Cheng, G., Zielonka, J., Ouari, O., Lopez, M., McAllister, D., Boyle, K., Barrios, C.S., Weber, J.J., Johnson, B.D., Hardy, M., Dwinell, M.B., Kalyanaraman, B. Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells, Cancer Research. 2016, 76, 3904–15. doi:10.1158/0008-5472.CAN-15-2534.
[161] Reddy, C.A., Somepalli, V., Golakoti, T., Kanugula, A.K., Karnewar, S., Rajendiran, K., Vasagiri, N., Prabhakar, S., Kuppusamy, P., Kotamraju, S., Kutala, V.K. Mitochondrial-Targeted Curcuminoids: A Strategy to Enhance Bioavailability and Anticancer Efficacy of Curcumin, PLoS ONE. 2014, 9, e89351. doi:10.1371/journal.pone.0089351.
[162] Lüllmann, H., Mohr, K., Wehling, M. Farmakologie a toxikologie: 47 tabulek. Grada Publishing a.s.; 2004.
[163] Golan, D.E., Jr, A.H.T., Armstrong, E.J., Armstrong, A.W. Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy, 3rd Edition. 3rd edition. Philadelphia: LWW; 2011.
[164] Patrick, G.L. An Introduction to Medicinal Chemistry. 5 edition. Oxford: Oxford University Press; 2013.
[165] Traini, C., Faussone-Pellegrini, M.S., Evangelista, S., Mazzaferro, K., Cipriani, G., Santicioli, P., Vannucchi, M.G. Inner and Outer Portions of Colonic Circular Muscle: Ultrastructural and Immunohistochemical Changes in Rat Chronically Treated with Otilonium Bromide, PLoS ONE. 2014, 9, e103237. doi:10.1371/journal.pone.0103237.
[166] Triantafillidis, J., Malgarinos, G. Long-term efficacy and safety of otilonium bromide in the management of irritable bowel syndrome: a literature review, Clinical and Experimental Gastroenterology. 2014, 75. doi:10.2147/CEG.S46291.
[167] Evangelista, S. Quaternary ammonium derivatives as spasmolytics for irritable bowel syndrome, Curr Pharm Des. 2004, 10, 3561–8.

Chapter 6

[1] Bally, M.B., Harvie, P., Wong, F.M.P., Kong, S., Wasan, E.K., Reimer, D.L. Biological barriers to cellular delivery of lipid-based DNA carriers, Adv Drug Deliv Rev. 1999, 38, 291–315. doi:10.1016/S0169-409X(99)00034-4.
[2] Zhao, X., Shang, Y., Liu, H., Hu, Y. Complexation of DNA with cationic gemini surfactant in aqueous solution, J Colloid Interface Sci. 2007, 314, 478–83. doi:10.1016/j.jcis.2007.04.059.
[3] Kirby, A.J., Camilleri, P., Engberts, J.B.F.N., Feiters, M.C., Nolte, R.J.M., Söderman, O., Bergsma, M., Bell, P.C., Fielden, M.L., García Rodríguez, C.L., Guédat, P., Kremer, A., McGregor, C., Perrin, C., Ronsin, G., van Eijk, M.C.P. Gemini Surfactants: New Synthetic Vectors for Gene Transfection, Angew Chem Int Ed. 2003, 42, 1448–57. doi:10.1002/anie.200201597.
[4] Dias, R.S., Innerlohinger, J., Glatter, O., Miguel, M.G., Lindman, B. Coil−Globule Transition of DNA Molecules Induced by Cationic Surfactants: A Dynamic Light Scattering Study, J Phys Chem B. 2005, 109, 10458–63. doi:10.1021/jp0444464.
[5] Tzeng, S.Y., Yang, P.H., Grayson, W.L., Green, J.J. Synthetic poly(ester amine) and poly(amido amine) nanoparticles for efficient DNA and siRNA delivery to human endothelial cells, Int J Nanomedicine. 2011, 6, 3309–22. doi:10.2147/IJN.S27269.
[6] Behr, J.P. Synthetic gene-transfer vectors, Acc Chem Res. 1993, 26, 274–8. doi:10.1021/ar00029a008.
[7] Friedmann, T. Overcoming the obstacles to gene therapy, Sci Am. 1997, 276, 96–101.
[8] Lehrman, S. Virus treatment questioned after gene therapy death, Nature. 1999, 401, 517–8. doi:10.1038/43977.
[9] Thomas, C.E., Ehrhardt, A., Kay, M.A. Progress and problems with the use of viral vectors for gene therapy, Nat Rev Genet. 2003, 4, 346–58. doi:10.1038/nrg1066.

[10] Wettig, S.D., Badea, I., Donkuru, M., Verrall, R.E., Foldvari, M. Structural and transfection properties of amine-substituted gemini surfactant-based nanoparticles, J Gene Med. 2007, 9, 649–58. doi:10.1002/jgm.1060.
[11] Grueso, E., Cerrillos, C., Hidalgo, J., Lopez-Cornejo, P. Compaction and Decompaction of DNA Induced by the Cationic Surfactant CTAB, Langmuir. 2012, 28, 10968–79. doi:10.1021/la302373m.
[12] Zhou, T., Xu, G., Ao, M., Yang, Y., Wang, C. DNA compaction to multi-molecular DNA condensation induced by cationic imidazolium gemini surfactants, Colloids Surf Physicochem Eng Asp. 2012, 414, 33–40. doi:10.1016/j.colsurfa.2012.08.060.
[13] Liu, L., Yang, Y.-L., Wang, C., Yao, Y., Ma, Y.-Z., Hou, S., Feng, X.-Z. Polymeric effects on DNA condensation by cationic polymers observed by atomic force microscopy, Colloids Surf B Biointerfaces. 2010, 75, 230–8. doi:10.1016/j.colsurfb.2009.08.040.
[14] Lin, Y., Zhang, Y., Qiao, Y., Huang, J., Xu, B. Light and host–guest inclusion mediated salmon sperm DNA/surfactant interactions, J Colloid Interface Sci. 2011, 362, 430–8. doi:10.1016/j.jcis. 2011.06.083.
[15] Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A., Welsh, M.J. Cellular and molecular barriers to gene transfer by a cationic lipid, J Biol Chem. 1995, 270, 18997–9007.
[16] Ahn, H.H., Lee, M.S., Cho, M.H., Shin, Y.N., Lee, J.H., Kim, K.S., Kim, M.S., Khang, G., Hwang, K.C., Lee, I.W., Diamond, S.L., Lee, H.B. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells, Colloids Surf Physicochem Eng Asp. 2008, 313–314, 116–20. doi:10.1016/j.colsurfa.2007.04.156.
[17] Truong, N.P., Jia, Z., Burgess, M., Payne, L., McMillan, N.A.J., Monteiro, M.J. Self-Catalyzed Degradable Cationic Polymer for Release of DNA, Biomacromolecules. 2011, 12, 3540–8. doi:10.1021/bm2007423.

[18] Kamata, H., Zinchenko, A., Murata, S. Effects of cationic and anionic nanoparticles on the stability of the secondary structure of DNA, Colloid Polym Sci. 2011, 289, 1329–35. doi:10.1007/s00396-011-2453-5.
[19] De Smedt, S.C., Demeester, J., Hennink, W.E. Cationic polymer based gene delivery systems, Pharm Res. 2000, 17, 113–26.
[20] Liu, M., Chen, J., Cheng, Y.-P., Xue, Y.-N., Zhuo, R.-X., Huang, S.-W. Novel Poly(amidoamine)s with Pendant Primary Amines as Highly Efficient Gene Delivery Vectors, Macromol Biosci. 2010, 10, 384–92. doi:10.1002/mabi.200900265.
[21] Utsuno, K., Uludağ, H. Thermodynamics of Polyethylenimine-DNA Binding and DNA Condensation, Biophys J. 2010, 99, 201–7. doi:10.1016/j.bpj.2010.04.016.
[22] Godbey, W.T., Wu, K.K., Mikos, A.G. Poly(ethylenimine) and its role in gene delivery, J Control Release Off J Control Release Soc. 1999, 60, 149–60.
[23] Godbey, W.T., Wu, K.K., Hirasaki, G.J., Mikos, A.G. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency, Gene Ther. 1999, 6, 1380–8. doi:10.1038/sj.gt.3300976.
[24] Farrell, L.-L., Pepin, J., Kucharski, C., Lin, X., Xu, Z., Uludag, H. A comparison of the effectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC), Eur J Pharm Biopharm. 2007, 65, 388–97. doi:10.1016/j.ejpb.2006.11.026.
[25] Ikonen, M., Murtomäki, L., Kontturi, K. Controlled complexation of plasmid DNA with cationic polymers: Effect of surfactant on the complexation and stability of the complexes, Colloids Surf B Biointerfaces. 2008, 66, 77–83. doi:10.1016/j.colsurfb.2008.05.012.
[26] Wan, L., You, Y., Zou, Y., Oupický, D., Mao, G. DNA Release Dynamics from Bioreducible Poly(amido amine) Polyplexes, J Phys Chem B. 2009, 113, 13735–41. doi:10.1021/jp901835u.

[27] Pelta, J., Durand, D., Doucet, J., Livolant, F. DNA mesophases induced by spermidine: structural properties and biological implications, Biophys J. 1996, 71, 48–63. doi:10.1016/S0006-3495(96)79232-9.
[28] Deng, H. Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy, Nucleic Acids Res. 2000, 28, 3379–85. doi:10.1093/nar/28.17.3379.
[29] Feuerstein, B.G., Pattabiraman, N., Marton, L.J. Spermine-DNA interactions: a theoretical study, Proc Natl Acad Sci. 1986, 83, 5948–52.
[30] Raspaud, E., Olvera de la Cruz, M., Sikorav, J.-L., Livolant, F. Precipitation of DNA by Polyamines: A Polyelectrolyte Behavior, Biophys J. 1998, 74, 381–93. doi:10.1016/S0006-3495(98)77795-1.
[31] Raspaud, E., Chaperon, I., Leforestier, A., Livolant, F. Spermine-Induced Aggregation of DNA, Nucleosome, and Chromatin, Biophys J. 1999, 77, 1547–55. doi:10.1016/S0006-3495(99)77002-5.
[32] Raspaud, E., Durand, D., Livolant, F. Interhelical Spacing in Liquid Crystalline Spermine and Spermidine-DNA Precipitates, Biophys J. 2005, 88, 392–403. doi:10.1529/biophysj.104.040113.
[33] Carlstedt, J., Lundberg, D., Dias, R.S., Lindman, B. Condensation and Decondensation of DNA by Cationic Surfactant, Spermine, or Cationic Surfactant–Cyclodextrin Mixtures: Macroscopic Phase Behavior, Aggregate Properties, and Dissolution Mechanisms, Langmuir. 2012, 28, 7976–89. doi:10.1021/la300266h.
[34] Azzam, T., Eliyahu, H., Makovitzki, A., Linial, M., Domb, A.J. Hydrophobized dextran-spermine conjugate as potential vector for in vitro gene transfection, J Controlled Release. 2004, 96, 309–23. doi:10.1016/j.jconrel.2004.01.022.
[35] Godeshala, S., Nitiyanandan, R., Thompson, B., Goklany, S., Nielsen, D.R., Rege, K. Folate receptor-targeted aminoglycoside-derived polymers for transgene expression in cancer cells: Bioeng Transl Med. 2016, 1, 220–31. doi:10.1002/btm2.10038.
[36] Levine, R.M., Dinh, C.V., Harris, M.A., Kokkoli, E. Targeting HPV-infected cervical cancer cells with PEGylated liposomes encapsulating siRNA and the role of siRNA complexation with polyethylenimine, Bioeng Transl Med. 2016, 1, 168–80. doi:10.1002/btm2.10022.
[37] Hou, S., Yang, K., Yao, Y., Liu, Z., Feng, X., Wang, R., Yang, Y., Wang, C. DNA condensation induced by a cationic polymer studied by atomic force microscopy and electrophoresis assay, Colloids Surf B Biointerfaces. 2008, 62, 151–6. doi:10.1016/j.colsurfb. 2007.09.032.
[38] Goula, D., Benoist, C., Mantero, S., Merlo, G., Levi, G., Demeneix, B.A. Polyethylenimine-based intravenous delivery of transgenes to mouse lung, Gene Ther. 1998, 5, 1291–5. doi:10.1038/sj.gt.3300717.
[39] Lee, H., Jeong, J.H., Park, T.G. A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide, J Controlled Release. 2001, 76, 183–92. doi:10.1016/S0168-3659(01)00426-6.
[40] Sharma, V.K., Thomas, M., Klibanov, A.M. Mechanistic studies on aggregation of polyethylenimine-DNA complexes and its prevention, Biotechnol Bioeng. 2005, 90, 614–20. doi:10.1002/ bit.20444.
[41] Dias, R.S., Lindman, B., Miguel, M.G. Compaction and Decompaction of DNA in the Presence of Catanionic Amphiphile Mixtures, J Phys Chem B. 2002, 106, 12608–12. doi:10.1021/ jp020392r.
[42] Dias, R., Rosa, M., Pais, A.C., Miguel, M., Lindman, B. DNA-Surfactant Interactions. Compaction, Condensation, Decompaction and Phase Separation, J Chin Chem Soc. 2004, 51, 447–69. doi:10.1002/jccs.200400069.
[43] Miguel, M. DNA–cationic amphiphile interactions, Colloids Surf Physicochem Eng Asp. 2003, 228, 43–55. doi:10.1016/S0927-7757(03)00334-0.

[44] Bonincontro, A., La Mesa, C., Proietti, C., Risuleo, G. A Biophysical Investigation on the Binding and Controlled DNA Release in a Cetyltrimethylammonium Bromide−Sodium Octyl Sulfate Cat-Anionic Vesicle System, Biomacromolecules. 2007, 8, 1824–9. doi:10.1021/bm0612079.
[45] Hayakawa, K., Santerre, J.P., Kwak, J.C.T. The binding of cationic surfactants by DNA, Biophys Chem. 1983, 17, 175–81. doi:10.1016/0301-4622(83)87001-X.
[46] Maulik, S., Chattoraj, D.K., Moulik, S.P. Biopolymer–surfactant interaction: 3, Colloids Surf B Biointerfaces. 1998, 11, 57–65. doi:10.1016/S0927-7765(98)00012-5.
[47] Dasgupta, A., Das, P.K., Dias, R.S., Miguel, M.G., Lindman, B., Jadhav, V.M., Gnanamani, M., Maiti, S. Effect of Headgroup on DNA−Cationic Surfactant Interactions, J Phys Chem B. 2007, 111, 8502–8. doi:10.1021/jp068571m.
[48] Dias, R.S., Magno, L.M., Valente, A.J.M., Das, D., Das, P.K., Maiti, S., Miguel, M.G., Lindman, B. Interaction between DNA and Cationic Surfactants: Effect of DNA Conformation and Surfactant Headgroup, J Phys Chem B. 2008, 112, 14446–52. doi:10.1021/jp8027935.
[49] Mel’nikov, S.M., Lindman, B. Solubilization of DNA−Cationic Lipid Complexes in Hydrophobic Solvents. A Single-Molecule Visualization by Fluorescence Microscopy, Langmuir. 1999, 15, 1923–8. doi:10.1021/la981255h.
[50] Mel’nikov, S.M., Mel’nikova, Y.S., Löfroth, J.-E. Single-Molecule Visualization of Interaction between DNA and Oppositely Charged Mixed Liposomes, J Phys Chem B. 1998, 102, 9367–9. doi:10.1021/jp982820s.
[51] Silva, J.P.N., Oliveira, A.C.N., Lúcio, M., Gomes, A.C., Coutinho, P.J.G., Oliveira, M.E.C.D.R. Tunable pDNA/DODAB:MO lipoplexes: The effect of incubation temperature on pDNA/DODAB:MO lipoplexes structure and transfection efficiency, Colloids Surf B Biointerfaces. 2014, 121, 371–9. doi:10. 1016/j.colsurfb.2014.06.019.
[52] Jadhav, V.M., Valaske, R., Maiti, S. Interaction Between 14mer DNA Oligonucleotide and Cationic Surfactants of Various Chain Lengths, J Phys Chem B. 2008, 112, 8824–31. doi:10.1021/ jp8017452.
[53] Marchetti, S., Onori, G., Cametti, C. DNA Condensation Induced by Cationic Surfactant: A Viscosimetry and Dynamic Light Scattering Study, J Phys Chem B. 2005, 109, 3676–80. doi:10.1021/jp044867l.
[54] Marchetti, S., Onori, G., Cametti, C. Calorimetric and Dynamic Light-Scattering Investigation of Cationic Surfactant−DNA Complexes, J Phys Chem B. 2006, 110, 24761–5. doi:10.1021/ jp063598r.
[55] Rudiuk, S., Yoshikawa, K., Baigl, D. Enhancement of DNA compaction by negatively charged nanoparticles: Effect of nanoparticle size and surfactant chain length, J Colloid Interface Sci. 2012, 368, 372–7. doi:10.1016/j.jcis.2011.10.033.
[56] McLoughlin, D., Langevin, D. Surface complexation of DNA with a cationic surfactant, Colloids Surf Physicochem Eng Asp. 2004, 250, 79–87. doi:10.1016/j.colsurfa.2004.04.096.
[57] Cárdenas, M., Nylander, T., Jönsson, B., Lindman, B. The interaction between DNA and cationic lipid films at the air–water interface, J Colloid Interface Sci. 2005, 286, 166–75. doi:10.1016/j.jcis.2005.01.008.
[58] Cárdenas, M., Nylander, T., Lindman, B. DNA and cationic surfactants at solid surfaces, Colloids Surf Physicochem Eng Asp. 2005, 270–271, 33–43. doi:10.1016/j.colsurfa.2005.05.034.
[59] Cárdenas, M., Braem, A., Nylander, T., Lindman, B. DNA Compaction at Hydrophobic Surfaces Induced by a Cationic Amphiphile, Langmuir. 2003, 19, 7712–8. doi:10.1021/la026747f.
[60] Devínsky, F., Pisárčik, M., Lacko, I. Hydrodynamic size of DNA/cationic gemini surfactant complex as a function of surfactant structure, Gen Physiol Biophys. 2009, 28, 160–7.

[61] Uhríková, D., Zajac, I., Dubničková, M., Pisárčik, M., Funari, S.S., Rapp, G., Balgavý, P. Interaction of gemini surfactants butane-1,4-diyl-bis(alkyldimethylammonium bromide) with DNA, Colloids Surf B Biointerfaces. 2005, 42, 59–68. doi:10.1016/j.colsurfb. 2005.02.002.
[62] Muñoz-Úbeda, M., Misra, S.K., Barrán-Berdón, A.L., Datta, S., Aicart-Ramos, C., Castro-Hartmann, P., Kondaiah, P., Junquera, E., Bhattacharya, S., Aicart, E. How Does the Spacer Length of Cationic Gemini Lipids Influence the Lipoplex Formation with Plasmid DNA? Physicochemical and Biochemical Characterizations and their Relevance in Gene Therapy, Biomacromolecules. 2012, 13, 3926–37. doi:10.1021/bm301066w.
[63] Luciani, P., Bombelli, C., Colone, M., Giansanti, L., Ryhänen, S.J., Säily, V.M.J., Mancini, G., Kinnunen, P.K.J. Influence of the Spacer of Cationic Gemini Amphiphiles on the Hydration of Lipoplexes, Biomacromolecules. 2007, 8, 1999–2003. doi:10.1021/bm070202o.
[64] Bombelli, C., Borocci, S., Diociaiuti, M., Faggioli, F., Galantini, L., Luciani, P., Mancini, G., Sacco, M.G. Role of the Spacer of Cationic Gemini Amphiphiles in the Condensation of DNA, Langmuir. 2005, 21, 10271–4.
[65] García, J.P., Marrón, E., Martín, V.I., Moyá, M.L., Lopez-Cornejo, P. Conformational changes of DNA in the presence of 12-s-12 gemini surfactants (s=2 and 10). Role of the spacer’s length in the interaction surfactant-polynucleotide, Colloids Surf B Biointerfaces. 2014, 118, 90–100. doi:10.1016/j.colsurfb.2014.03.040.
[66] He, Y., Shang, Y., Shao, S., Liu, H., Hu, Y. Micellization of cationic gemini surfactant and its interaction with DNA in dilute brine, J Colloid Interface Sci. 2011, 358, 513–20. doi:10.1016/j.jcis. 2011.03.034.
[67] Zhao, X., Shang, Y., Hu, J., Liu, H., Hu, Y. Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12, Biophys Chem. 2008, 138, 144–9. doi:10.1016/j.bpc.2008.09.014.
[68] Zhao, X., Shang, Y., Liu, H., Hu, Y., Jiang, J. Interaction of DNA with Cationic Gemini Surfactant Trimethylene-1,3-bis (dodecyldimethyl-ammonium bromide) and Anionic Surfactant SDS Mixed System, Chin J Chem Eng. 2008, 16, 923–8. doi:10.1016/S1004-9541(09)60017-3.
[69] Vongsetskul, T., Taylor, D.J.F., Zhang, J., Li, P.X., Thomas, R.K., Penfold, J. Interaction of a Cationic Gemini Surfactant with DNA and with Sodium Poly(styrene sulphonate) at the Air/Water Interface: A Neutron Reflectometry Study, Langmuir. 2009, 25, 4027–35. doi:10.1021/la802816s.
[70] Sarrión, B., Bernal, E., Martín, V.I., López-López, M., López-Cornejo, P., García-Calderón, M., Moyá, M.L. Binding of 12-s-12 dimeric surfactants to calf thymus DNA: Evaluation of the spacer length influence, Colloids Surf B Biointerfaces. 2016, 144, 311–8. doi:10.1016/j.colsurfb.2016.04.028.
[71] Chen, Q., Kang, X., Li, R., Du, X., Shang, Y., Liu, H., Hu, Y. Structure of the Complex Monolayer of Gemini Surfactant and DNA at the Air/Water Interface, Langmuir. 2012, 28, 3429–38. doi:10.1021/la204089u.
[72] Jiang, N., Wang, J., Wang, Y., Yan, H., Thomas, R.K. Microcalorimetric study on the interaction of dissymmetric gemini surfactants with DNA, J Colloid Interface Sci. 2005, 284, 759–64. doi:10.1016/j.jcis.2004.10.055.
[73] Zakharova, L.Y., Gabdrakhmanov, D.R., Ibragimova, A.R., Vasilieva, E.A., Nizameev, I.R., Kadirov, M.K., Ermakova, E.A., Gogoleva, N.E., Faizullin, D.A., Pokrovsky, A.G., Korobeynikov, V.A., Cheresiz, S.V., Zuev, Y.F. Structural, biocomplexation and gene delivery properties of hydroxyethylated gemini surfactants with varied spacer length, Colloids Surf B Biointerfaces. 2016, 140, 269–77. doi:10.1016/j.colsurfb.2015.12.045.

[74] Cardoso, A.M., Morais, C.M., Silva, S.G., Marques, E.F., de Lima, M.C.P., Jurado, M.A.S. Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: A comprehensive study from physicochemical properties to membrane interactions, Int J Pharm. 2014, 474, 57–69. doi:10.1016/j.ijpharm.2014.08.011.
[75] Sohrabi, B., Khani, V., Moosavi-Movahedi, A.A., Moradi, P. Investigation of DNA–cationic bolaform surfactants interaction with different spacer length, Colloids Surf B Biointerfaces. 2013, 110, 29–35. doi:10.1016/j.colsurfb.2013.04.032.
[76] Misra, S.K., Muñoz-Úbeda, M., Datta, S., Barrán-Berdón, A.L., Aicart-Ramos, C., Castro-Hartmann, P., Kondaiah, P., Junquera, E., Bhattacharya, S., Aicart, E. Effects of a Delocalizable Cation on the Headgroup of Gemini Lipids on the Lipoplex-Type Nanoaggregates Directly Formed from Plasmid DNA, Biomacromolecules. 2013, 14, 3951–63. doi:10.1021/bm401079h.
[77] Pietralik, Z., Kumita, J.R., Dobson, C.M., Kozak, M. The influence of novel gemini surfactants containing cycloalkyl side-chains on the structural phases of DNA in solution, Colloids Surf B Biointerfaces. 2015, 131, 83–92. doi:10.1016/j.colsurfb.2015.04.042.
[78] Lin, Y., Zhang, Y., Qiao, Y., Huang, J., Xu, B. Light and host–guest inclusion mediated salmon sperm DNA/surfactant interactions, J Colloid Interface Sci. 2011, 362, 430–8. doi:10.1016/ j.jcis.2011.06.083.
[79] Kamboj, R., Singh, S., Bhadani, A., Kataria, H., Kaur, G. Gemini Imidazolium Surfactants: Synthesis and Their Biophysiochemical Study, Langmuir. 2012, 28, 11969–78. doi:10.1021/la300920p.
[80] Bhadani, A., Singh, S. Novel Gemini Pyridinium Surfactants: Synthesis and Study of Their Surface Activity, DNA Binding, and Cytotoxicity, Langmuir. 2009, 25, 11703–12. doi:10.1021/ la901641f.
[81] Bhadani, A., Kataria, H., Singh, S. Synthesis, characterization and comparative evaluation of phenoxy ring containing long chain gemini imidazolium and pyridinium amphiphiles, J Colloid Interface Sci. 2011, 361, 33–41. doi:10.1016/j.jcis.2011.05.023.
[82] Bhadani, A., Singh, S. Synthesis and Properties of Thioether Spacer Containing Gemini Imidazolium Surfactants, Langmuir. 2011, 27, 14033–44. doi:10.1021/la202201r.
[83] Fisicaro, E., Compari, C., Bacciottini, F., Contardi, L., Barbero, N., Viscardi, G., Quagliotto, P., Donofrio, G., Różycka-Roszak, B., Misiak, P., Woźniak, E., Sansone, F. Nonviral Gene Delivery: Gemini Bispyridinium Surfactant-Based DNA Nanoparticles, J Phys Chem B. 2014, 118, 13183–91. doi:10.1021/jp507999g.
[84] Chauhan, V., Singh, S., Kamboj, R., Mishra, R., Kaur, G. Self-assembly, DNA binding and cytotoxicity trends of ether functionalized gemini pyridinium amphiphiles, J Colloid Interface Sci. 2014, 417, 385–95. doi:10.1016/j.jcis.2013.11.059.
[85] Chauhan, V., Singh, S., Kaur, T., Kaur, G. Self-Assembly and Biophysical Properties of Gemini 3-Alkyloxypyridinium Amphiphiles with a Hydroxyl-Substituted Spacer, Langmuir. 2015, 31, 2956–66. doi:10.1021/la5045267.
[86] Gabdrakhmanov, D., Samarkina, D., Semenov, V., Syakaev, V., Giniyatullin, R., Gogoleva, N., Reznik, V., Latypov, S., Konovalov, A., Pokrovsky, A., Zuev, Y., Zakharova, L. Novel dicationic pyrimidinic surfactant: Self-assembly and DNA complexation, Colloids Surf Physicochem Eng Asp. 2015, 480, 113–21. doi:10.1016/j.colsurfa.2014.10.036.
[87] Misra, S.K., Biswas, J., Kondaiah, P., Bhattacharya, S. Gene Transfection in High Serum Levels: Case Studies with New Cholesterol Based Cationic Gemini Lipids, PLoS ONE. 2013, 8, e68305. doi:10.1371/journal.pone.0068305.
[88] Bajaj, A., Kondaiah, P., Bhattacharya, S. Effect of the Nature of the Spacer on Gene Transfer Efficacies of Novel Thiocholesterol Derived Gemini Lipids in Different Cell Lines: A Structure–Activity Investigation, J Med Chem. 2008, 51, 2533–40. doi:10.1021/ jm7010436.

[89] Bajaj, A., Kondiah, P., Bhattacharya, S. Design, Synthesis, and in Vitro Gene Delivery Efficacies of Novel Cholesterol-Based Gemini Cationic Lipids and Their Serum Compatibility: A Structure−Activity Investigation, J Med Chem. 2007, 50, 2432–42. doi:10.1021/jm0611253.
[90] Mamusa, M., Resta, C., Barbero, F., Carta, D., Codoni, D., Hatzixanthis, K., McArthur, M., Berti, D. Interaction between a cationic bolaamphiphile and DNA: The route towards nanovectors for oligonucleotide antimicrobials, Colloids Surf B Biointerfaces. 2016, 143, 139–47. doi:10.1016/j.colsurfb.2016.03.031.
[91] Li, Y., Zhang, X., Li, Y., Li, C., Guo, X. Micellization of glucose-based surfactants with different counter ions and their interaction with DNA, Colloids Surf Physicochem Eng Asp. 2014, 443, 224–32. doi:10.1016/j.colsurfa.2013.11.015.
[92] Valivety, R., Gill, I.S., Vulfson, E.N. Application of enzymes to the synthesis of amino acid-based bola and gemini surfactants, J Surfactants Deterg. 1998, 1, 177–85. doi:10.1007/s11743-998-0017-3.
[93] Infante, M.R., Pérez, L., Pinazo, A., Clapés, P., Morán, M.C., Angelet, M., García, M.T., Vinardell, M.P. Amino acid-based surfactants, Comptes Rendus Chim. 2004, 7, 583–92. doi:10.1016/j.crci.2004.02.009.
[94] Holmberg, K. Novel Surfactants: Preparation Applications And Biodegradability, Second Edition. CRC Press; 2003.
[95] Branco, M.A., Pinheiro, L., Faustino, C. Amino acid-based cationic gemini surfactant–protein interactions, Colloids Surf Physicochem Eng Asp. 2015, 480, 105–12. doi:10.1016/j.colsurfa.2014.12.022.
[96] Pérez, L., Pinazo, A., Pons, R., Infante, M.R. Gemini surfactants from natural amino acids, Adv Colloid Interface Sci. 2014, 205, 134–55. doi:10.1016/j.cis.2013.10.020.

[97] Singh, J., Michel, D., Chitanda, J.M., Verrall, R.E., Badea, I. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles, J Nanobiotechnology. 2012, 10, 7. doi:10.1186/1477-3155-10-7.
[98] Yang, P., Singh, J., Wettig, S., Foldvari, M., Verrall, R.E., Badea, I. Enhanced gene expression in epithelial cells transfected with amino acid-substituted gemini nanoparticles, Eur J Pharm Biopharm. 2010, 75, 311–20. doi:10.1016/j.ejpb.2010.04.007.
[99] Singh, J., Yang, P., Michel, D., Verrall, R.E., Foldvari, M., Badea, I. Amino acid-substituted gemini surfactant-based nanoparticles as safe and versatile gene delivery agents, Curr Drug Deliv. 2011, 8, 299–306.
[100] Dehaini, D., Fang, R.H., Zhang, L. Biomimetic strategies for targeted nanoparticle delivery: Dehaini et al., Bioeng Transl Med. 2016, 1, 30–46. doi:10.1002/btm2.10004.
[101] Toy, R., Roy, K. Engineering nanoparticles to overcome barriers to immunotherapy: Toy and Roy, Bioeng Transl Med. 2016, 1, 47–62. doi:10.1002/btm2.10005.
[102] Dong, C., Badea, I., Poorghorban, M., Verrall, R., Foldvari, M. Impact of phospholipids on plasmid packaging and toxicity of gemini nanoparticles, J Mater Chem B Mater Biol Med. 2015, 3, 8806–22. doi:10.1039/C5TB01400J.
[103] Gharagozloo, M., Rafiee, A., Chen, D.W., Foldvari, M. A flow cytometric approach to study the mechanism of gene delivery to cells by gemini-lipid nanoparticles: an implication for cell membrane nanoporation, J Nanobiotechnology. 2015, 13. doi:10.1186/s12951-015-0125-1.
[104] Alqawlaq, S., Sivak, J.M., Huzil, J.T., Ivanova, M.V., Flanagan, J.G., Beazely, M.A., Foldvari, M. Preclinical development and ocular biodistribution of gemini-DNA nanoparticles after intravitreal and topical administration: Towards non-invasive glaucoma gene therapy, Nanomedicine Nanotechnol Biol Med. 2014, 10, 1637–47. doi:10.1016/j.nano.2014.05.010.
[105] Badea, I., Wettig, S., Verrall, R., Foldvari, M. Topical non-invasive gene delivery using gemini nanoparticles in interferon-γ-deficient mice, Eur J Pharm Biopharm. 2007, 65, 414–22. doi:10.1016/j.ejpb.2007.01.002.
[106] Badea, I., Virtanen, C., Verrall, R.E., Rosenberg, A., Foldvari, M. Effect of topical interferon-γ gene therapy using gemini nanoparticles on pathophysiological markers of cutaneous scleroderma in Tsk/+ mice, Gene Ther. 2012, 19, 978–87. doi:10.1038/gt.2011.159.
[107] Elsabahy, M., Foldvari, M. Needle-free Gene Delivery Through the Skin: An Overview of Recent Strategies, Curr Pharm Des. 2013, 19, 7301–15. doi:10.2174/13816128113199990369.
[108] Foldvari, M., Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties, Nanomedicine Nanotechnol Biol Med. 2008, 4, 173–82. doi:10.1016/j.nano.2008.04.002.
[109] Vaisman, L., Marom, G., Wagner, H.D. Dispersions of Surface-Modified Carbon Nanotubes in Water-Soluble and Water-Insoluble Polymers, Adv Funct Mater. 2006, 16, 357–63. doi:10.1002/ adfm.200500142.
[110] Steinmetz, J., Glerup, M., Paillet, M., Bernier, P., Holzinger, M. Production of pure nanotube fibers using a modified wet-spinning method, Carbon. 2005, 43, 2397–400. doi:10.1016/ j.carbon.2005.03.047.
[111] Poulin, P., Vigolo, B., Launois, P. Films and fibers of oriented single wall nanotubes, Carbon. 2002, 40, 1741–9. doi:10.1016/S0008-6223(02)00042-8.
[112] Camponeschi, E., Florkowski, B., Vance, R., Garrett, G., Garmestani, H., Tannenbaum, R. Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow, Langmuir. 2006, 22, 1858–62. doi:10.1021/la052714z.
[113] Tan, Y., Resasco, D.E. Dispersion of Single-Walled Carbon Nanotubes of Narrow Diameter Distribution, J Phys Chem B. 2005, 109, 14454–60. doi:10.1021/jp052217r.
[114] Matarredona, O., Rhoads, H., Li, Z., Harwell, J.H., Balzano, L., Resasco, D.E. Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS, J Phys Chem B. 2003, 107, 13357–67. doi:10.1021/jp0365099.
[115] Dyke, C.A., Tour, J.M. Overcoming the Insolubility of Carbon Nanotubes Through High Degrees of Sidewall Functionalization, Chem - Eur J. 2004, 10, 812–7. doi:10.1002/chem.200305534.
[116] Barraza, H.J., Pompeo, F., O’Rea, E.A., Resasco, D.E. SWNT-Filled Thermoplastic and Elastomeric Composites Prepared by Miniemulsion Polymerization, Nano Lett. 2002, 2, 797–802. doi:10.1021/nl0256208.
[117] Shim, M., Shi Kam, N.W., Chen, R.J., Li, Y., Dai, H. Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition, Nano Lett. 2002, 2, 285–8. doi:10.1021/nl015692j.
[118] Kam, N.W.S., Dai, H. Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality, J Am Chem Soc. 2005, 127, 6021–6. doi:10.1021/ja050062v.
[119] Kam, N.W.S., Liu, Z., Dai, H. Functionalization of Carbon Nanotubes via Cleavable Disulfide Bonds for Efficient Intracellular Delivery of siRNA and Potent Gene Silencing, J Am Chem Soc. 2005, 127, 12492–3. doi:10.1021/ja053962k.
[120] Kam, N.W.S., Jan, E., Kotov, N.A. Electrical Stimulation of Neural Stem Cells Mediated by Humanized Carbon Nanotube Composite Made with Extracellular Matrix Protein, Nano Lett. 2009, 9, 273–8. doi:10.1021/nl802859a.

Subject areas: Biopharmacy, Colloid chemistry, Organic chemistry, Nanomedicine
Potential audience: undergraduate students, PhD students, academic staff, researchers, academic community, experts from the field of surfactant and colloid chemistry, broad public

You have not viewed any product yet.