Table of Contents
Table of Contents
Preface pp,vii-xiii
Chapter 1: Calcium orthophosphates and man: A historical perspective from the 1770s to 1940;pp. 1-40
(Sergey V. Dorozhkin,Moscow, Russia)pp,1-40
Chapter 2: The carbonate ions in hydroxyapatite and biological apatite;pp. 41-61
(Michael E. Fleet (Department of Earth Sciences, University of Western Ontario, London, Ontario, Canada)pp,41-62
Chapter 3: Structurally incorporated water in bone apatite: A cautionary tale;pp. 63-94
(Jill D. Pasteris, Department of Earth and Planetary Sciences and the Center for Materials Innovation, Washington University, St. Louis, USA) pp,63-94
Free Download Available
Chapter 4: Putting oxyhydroxyapatite into perspective: A pathway to oxyapatite and its application;pp. 95-120
(Karlis A. Gross and Liene Pluduma, Riga Technical University, Riga, Latvia)pp,95-120
Chapter 5: Nanodimensional calcium orthophos-phates: Recent developments and future applications;pp. 121-206
(Sergey V. Dorozhkin, Moscow, Russia)pp,121-206
Chapter 6: Controlled precipitation of calcium phosphates in glass-ceramics;pp. 207-214
(Christian Ritzberger, Marcel Schweiger, Volker M. Rheinberger and Wolfram Höland (Ivoclar Vivadent, Liechtenstein)pp,207-214
Chapter 7: Laser-Raman, nuclear magnetic resonance (NMR) and electron energy loss (EEL) spectroscopy studies of plasma-sprayed hydroxyapatite coatings;pp. 215-230
(Robert B. Heimann (Görlitz, Germany)pp,215-230
Chapter 8: Electrochemical deposition of calcium phosphate coatings on a prosthetic titanium alloy substrate;pp. 231-252
(Richard Drevet and Hicham Benhayoune, Institut National de la Santé et de la Recherche Médical, INSERM, Reims, France)pp,231-252
Chapter 9: Nanostructured hydroxyapatite coatings for medical implants deposited by radio-frequency magnetron sputtering: Properties and biomedical application;pp. 253-290
(Roman Surmenev et al., Scientific Educational Centre ‘Biocompatible Materials and Bioengineering’,Tomsk Polytechnic University, Russia)pp,253-290
Chapter 10: Effect of ß-TCP ceramics on osteogenic cells and bone healing;pp. 291-302
(Eliezer Gilsohn and Hanna Rapaport, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel)pp,291-302
Chapter 11: Calcium phosphate bone cements;pp. 303-332
(Sandra Pina and Jose M.F. Ferreira (Department of Ceramics and Glass Engineering, University of Aveiro, Portugal)pp,303-332
Chapter 12: Tetracalcium phosphate-based dental cements;pp. 333-342
(Claus Moseke and Uwe Gbureck, Universität Würzburg, Germany)pp,333-342
Chapter 13:Calcium Phosphate Urinary Stones: Prevalence, Composition And Management;pp. 343-361
(Maria Luigia Gianossi and Vito Summa, Laboratory of Environmental and Medical Geology, Tito Scalo, Italy)pp,343-362
Chapter 14: Transition metal-substituted calcium orthophosphates with NaSiCON structure: A novel type of bioceramics;pp. 363-379
(Robert B. Heimann (Görlitz, Germany)pp,363-380
Chapter 15: Calcium phosphates in dairy products;pp. 381-397
(Frédéric Gaucheron (Science et Technologie du Lait et de l’Œuf, Rennes, France)pp,381-398
Chapter 16: Analysis of a new active ingredient for sunscreens based on tricalcium phosphate nanoparticles;pp. 399-407
(Tatiana S. de Araujo W.Miyakawa,J.B.dos Santos-Filho,C.Otani,E.M.B.de Sousa,S.O.de Souza, Instituto Federal de Ciências e Technologia de Sergipe, Lagarto, Brasil and others)pp,399-408
Chapter 17: The use of apatite-type minerals for immobilization purposes;pp. 409-443
(Herbert Pöllmann, Department of Geosciences, Universität Halle, Germany)pp,409-444
Chapter 18: Calcium phosphate materials for radioactive waste immobilisation;pp. 445-465
(Eric R. Vance and Daniel J. Gregg, Institute for Materials Engineering, ANSTO, Kirrawee, NSW, Australia)pp,445-466
Chapter 19: Calcium phosphate in soft-paste porcelain: bone china;pp. 467-475
(Robert B. Heimann, Görlitz, Germany)pp,467-476
Index pp,477-495