Table of Contents
Table of Contents
Preface
Chapter 1. Preliminaries
Chapter 2. The Main Definitions on Periodicity
Chapter 3. Eventually Constant Signals
Chapter 4. Constant Signals
Chapter 5. Eventually Periodic Points
Chapter 6. Eventually Periodic Signals
Chapter 7. Periodic Points
Chapter 8. Periodic Signals
Chapter 9. Examples
Chapter 10. Computation Functions
Chapter 11. Flows
Chapter 12. A Wider Point of View: Control and Systems
Chapter 13. Eventually Constant Flows
Chapter 14. Constant Flows
Chapter 15. The Periodicity of the Flows
Bibliography
Appendix A. Notations
Appendix B. Index
Appendix C. Lemmas
References
[1] Dmitri V. Anosov, Vladimir I. Arnold (Eds.), ”Dynamical systems I”, Springer-Verlag, Berlin, (1988).
[2] David K. Arrowsmith, C. M. Place, ”An introduction to dynamical systems”, Cambridge University Press, New York, (1990).[3] Michael Brin, Garrett Stuck, ”Introduction to dynamical systems”, Cambridge University Press, New York, (2002).[4] Constant¸a-Dana Constantinescu, ”Haos, factali s¸i aplicat¸ii”, editura Flower Power, Pites¸ti, (2003).[5] Robert L. Devaney, ”A first course in chaotic dynamical systems. Theory and experiment”, Perseus Books Publishing, (1992).[6] Robert W. Easton, ”Geometric methods in discrete dynamical systems”, Oxford University Press, (1998).[7] Adelina Georgescu, MihneaMoroianu, Iuliana Oprea, ”Teoria Bifurcat¸iei, Principii s¸i Aplicat¸ii”, editura Universit˘at¸ii din Pites¸ti, Pites¸ti, (1999).[8] Boris Hasselblatt, Anatole Katok, ”Handbook of dynamical systems”, Volume 1, Elsevier, (2005).[9] Richard A. Holmgren, ”A first course in discrete dynamical systems”, Springer-Verlag, New York, (1994).[10] Jurgen Jost, ”Dynamical systems. Examples of complex behaviour”, Springer-Verlag, Berlin, Heidelberg, (2005).[11] Rudolf E. Kalman, Peter L. Falb, Michael A. Arbib, ”Teoria sistemelor dinamice”, Editura tehnic˘a, Bucures¸ti, (1975).[12] Yuri A. Kuznetsov, ”Elements of Applied Bifurcation Theory”, Second Edition, Springer, New York, (1997).[13] Mihaela Sterpu, ”Dinamic˘a s¸i bifurcat¸ie pentru dou˘amodele van der Pol generalizate”, editura Universit˘at¸ii din Pites¸ti, Pites¸ti, (2001).[14] Mariana P. Trifan, ”Dinamic˘a s¸i bifurcat¸ie ˆın studiulmatematic al cancerului”, editura P˘amˆantul, Pites¸ti, (2006).[15] Ivan Tyukin, ”Adaptation in dynamical systems”, Cambridge University Press, Cambridge, New York, (2011).[16] Serban E. Vlad, Boolean dynamical systems, ROMAI Journal, vol. 3, Nr. 2, 277-324, (2007).[17] Serban E. Vlad, Universal Regular Autonomous Asynchronous Systems: Fixed Points, Equivalencies and Dynamical Bifurcations, ROMAI Journal, vol. 5, Nr. 1, 131-154, (2009).[18] Serban E. Vlad, ”Asynchronous systems theory”, second edition, LAP LAMBERT Academic Publishing, Saarbrucken, (2012).[19] Serban E. Vlad, Eventually periodic points of the binary signals: definition, accessibility and limit of periodicity, ROMAI Journal, vol. 10, Nr. 2, 213-224, (2014).[20] Serban E. Vlad, Binary signals: the set of the periods of a periodic point, Buletinul Institutului Politehnic din Ias¸i, Sect¸ia Matematic˘a. Mecanic˘a teoretic˘a. Fizic˘a, Tomul LX (LXIV), Fasc. 4, 23-30, (2014). [21] Serban E. Vlad, The double eventual periodicity of the asynchronous flows, Proceedings of the Third Conference of Mathematical Society of Moldova IMCS-50, August 19-23, Chis¸in˘au, Republic of Moldova, (2014). [22] Serban E. Vlad, Binary signals: necessary and sufficient conditions of periodicity of a point, Analele Universit ˘at¸ii din Oradea, Fascicola Matematic˘a, TOMXXII, Issue No. 1, 23-31, (2015).[23] Stephen Wiggins, ”Introduction to Applied Nonlinear Dynamical Systems and Chaos”, Second Edition, Springer, New York, (2003).
The monograph addresses systems theory and computer science that apply to researchers, but it is also interesting to those that study periodicity itself.