Bi-Linear Model of Correlation between Heat Capacity and Volume Thermal Expansivity of Solids as a Novel Tool for Evaluation the Reliable Numerical Data for Purposes of Chemical Thermodynamics: Application to Rare Gas Solids

$82.00

Vladimir Yu. Bodryakov
Head of the Department of Higher Mathematics, Ural State Pedagogical University, Yekaterinburg, Russia

Series: Physics Research and Technology
BISAC: SCI065000

A systematic study has been undertaken of basic thermodynamic functions of Rare Gas Solids (RGS) through the whole range of their solid states. These functions included isobaric molar heat capacity CP(T), volume coefficient of thermal expansion ¦Â(T), molar volume V(T), differential Gr¨¹neisen parameter ¦Ã¡ä(T), et al.
In the first section of the chapter, thermodynamic grounds are considered for hypothesizing bi-linear correlation ¦Â(CP) between heat capacities and volume thermal expansivities of non-metal solids up to the melting points (B-model). Theoretical consideration is made within unharmonic Debye-Gr¨¹neisen model without and with an account of the influence of Frenkel defects in the premelting range. Mathematical relations for the B-model are also formulated. An algorithm of applications for the B-model for least the mean squares computer analysis of scattered experimental data (CP(T), ¦Â(T), and ¦Â(CP)) of different authors are described in detail.
In the second section of the chapter, computer thermodynamic model calculations have been done within the unharmonic Debye model without and with an account of the influence of Frenkel defects in the premelting range. The validity of the B-model was verified with respect to the results of model calculations. Within the framework of the model, the influence of variation of the model parameters is estimated.
In the third section of the chapter, an evaluation of thermodynamic functions of RGS Ne, Ar, Kr and Xe up to the melting points Tm with the use of the B-model was fulfilled as an example. The choice of RGS as model objects is due to the fact that they have quite representative thermodynamic data, they do not undergo polymorphous transformations in the solid state, they have no conductivity electrons, and the effects of anharmonicity and premelting cases are most evident in RGS.
A detailed critical analysis has been carried out of the available primary sources of various data on thermodynamic properties of RGS.

Table of Contents

Table of Contents

Introduction

Chapter 1. Thermodynamic Grounds for Hypothesizing Bi-Linear Correlation between Heat Capacities and Volume Thermal Expansivities of Solids up to the Melting Points (B-Model)

Chapter 2. Computer Thermodynamic Modelling. Properties of the B-Model

Chapter 3. Evaluation of Thermodynamic Functions of Solids with the Use of B-Model for Validation (On the Example of Rare Gas Solids)

Conclusion


References

[1] W. F. Giaque and P. F. Meads, J. Am. Chem. Soc. 63, 1897 (1941).
[2] T. E. Pochapsky, Acta Metallurgica. 1, 747 (1953).
[3] K. K. Kelley. Contributions to the data on theoretical metallurgy. XIII. High temperature heat content, heat capacity and entropy data for the elements and inorganic compounds. US Government printing office, Washington (1960).
[4] R. J. Corruccini and J. J. Gniewek. Specific heats of technical solids at low temperatures. A compilation from the literature. NBS Monograph NBS-21. US Government Printing Office, Washington (1960).
[5] A. J. Leadbetter, J. Phys. C: Solid State Phys. 1, 1481 (1968).
[6] C. R. Brooks and R. E. Bingham, J. Phys. Chem. Solids. 29, 1553 (1968).
[7] E. H. Buyco and F. E. Davis, J. Chem. Eng. Data. 15, 518 (1970).
[8] L. A. Novitskii and I. G. Kozhevnikov, Teplofizicheskie Svoistva Materialov pri Nizkikh Temperaturakh (Thermophysical Properties of Materials at Low Temperatures), Mashinostroenie, Moscow (1975).
[9] R. A. Robie, B. S. Hemingway, and J. R. Fisher. Thermodynamic properties of minerals and related substances at 298,15 K (25 °C) and one atmosphere (1,013 Bars) pressure and at higher temperatures. Geological survey bulletin N. 1452. US Government printing office, Washington (1979).
[10] D. B. Downie and J. F. Martin, J. Chem. Thermodyn. 12, 779 (1980).
[11] L. V. Gurvich, V. I. Veits, V. A. Medvedev, V. A. Krachkuruzov, V. S. Yungman, V. A. Bergman, V. F. Baibuz, V. S. Iorish, V. N. Yurkov, S. I. Gorbov, I. I. Nazarenko, O. V. Dorofeeva, V. F. Kuratova, E. L. Osina, A. V. Gusarov, V. Ya. Leonidov, I. N. Przheval’skii, A. L. Rogatskii, Yu. M. Efremov, V. G. Ryabova, V. Yu. Zitserman, Yu. G. Hait, E. A. Shenyavskaya, M. E. Efimov, V. A. Kulemza, Yu. S. Khodeev, S. E. Tomberg, V. N. Vdovin, A. Ya. Yakobson and M. S. Demidova, Termodina-micheskie Svoistva Individual’nykh Veshchestv. Spravochnoe Izdanie v 4kh Tomakh (Thermodynamic Properties of Individual Substances: A Reference Book in Four Volumes), Glushko, V. P., Ed., vol. III, books 1-2, Nauka, Moscow (1981).
[12] M. E. Drits, P. B. Budberg, G. S. Burkhanov, A. M. Drits and V. M. Panovko, Svoistva Elementov. Spravochnoe Izdanie (Properties of Elements: A Reference Book), Drits, M. E., Ed., Metallurgiya, Moscow (1985).
[13] D. A. Ditmars, C. A. Plint, and R. C. Shukla, Int. J. Thermophys. 6, 499 (1985).
[14] P. D. Desai, Int. J. Thermophysics. 8, 621 (1987).
[15] Y. Takahashi, T. Azumi, and Y. Sekine, Thermochim. Acta. 139, 133 (1989).
[16] Handbook of Physical Quantities, Grigoriev, I. S. and Meilikhov, E. Z., Eds., CRC Press, Boca Raton, Florida (1996).
[17] M. W. Chase, Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data. Monograph 9. 1998. P. 1-1951.
[18] A. T. Dinsdale, SGTE Data for Pure Elements. NPL Materials Centre, Teddington, Middlesex, United Kingdom (2007).
[19] G. W. C. Kaye and T. H. Laby, General Physics: Specific Heat Capacities. URL: http://www.kayelaby.npl.co.uk/general_ physics/2_3/2_3_6.html.
[20] V. Yu. Bodryakov and A. A. Bykov, Russian Metallurgy (Metally). 2016, 450 (2016).
[21] A. J. C. Wilson, Proc. Phys. Soc., 53, 235 (1941).
[22] F. C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941).
[23] E. Huzan, C. P. Abbiss and G. O. Jones, Phil. Mag. 6, 277 (1961).
[24] K. Andres, Cryogenics. 2, 93 (1961).
[25] R. J. Corruccini and J. J. Gnievek, Thermal Expansion of Technical Solids at Low Temperatures: A Compilation from the Literature. Monograph NBS-29. US Government Printing Office, Washington (1961).
[26] R. M. Nicklow and R. A. Young, Phys. Rev. 129, 1936 (1963).
[27] R. H. Carr and C. A. Swenson, Cryogenics. 4, 76 (1964).
[28] D. B. Fraser and A. C. Hollis Hallett, Can. J. Phys. 43, 193 (1965).
[29] A. J. Leadbetter, J. Phys. C: Solid State Phys. 1, 1489 (1968).
[30] P. D. Pathak and N. G. Vasavada, J. Phys. C: Solid State Phys. 3, L44 (1970).
[31] M. E. Straumanis and C. L. Woodward, Acta Cryst. A. 27, 549 (1971).
[32] F. G. Awad and D. Gugan, Cryogenics. 11, 414 (1971).
[33] J. G. Collins, G. K. White and C. A. Swenson, J. Low Temp. Phys. 10, 69 (1973).
[34] S. I. Novikova, Teplovoe Rasshirenie Tverdykh Tel. Spravochnoe Izdanie (Thermal Expansion of Solids: A Reference Book). Nauka, Moscow (1974).
[35] Y. S. Touloukian, R. K. Kirby, R. E. Taylor and P. D. Desai, Thermophysical Properties of Matter. V. 12. Thermal Expansion: Metallic Elements and Alloys. IFI/Plenum, New York (1975).
[36] F. R. Kroeger and C. A. Swenson, J. Appl. Phys. 48, 853 (1977).
[37] B. Hallstedt, Calphad. 31, 292 (2007).
[38] G. W. C. Kaye and T. H. Laby, General Physics: Thermal Expansion. URL: http://www.kayelaby.npl.co.uk/general_
physics/2_3/2_3_5.html
[39] V. Yu. Bodryakov, Tech. Physics. 58, 722 (2013).
[40] V. Yu. Bodryakov, High Temp. 52, 840 (2014).
[41] V. Yu. Bodryakov, Phys. Solid State. 56, 2359 (2014).
[42] V. Yu. Bodryakov, Open Sci. J. Mod. Phys. 2, 10 (2015).
[43] V. Yu. Bodryakov and A. A. Bykov, Glass and Ceramics. 72, 67 (2015).
[44] V. Yu. Bodryakov, Inorg. Mater. 51, 172 (2015).
[45] V. Yu. Bodryakov, Tech. Phys. 60, 381 (2015).
[46] V. Yu. Bodryakov, Open Sci. J. Mod. Phys. 2, 50 (2015).
[47] V. Yu. Bodryakov, High Temp. 53, 643 (2015).
[48] V. Yu. Bodryakov and Yu. N. Babintsev, Phys. Solid State. 57, 1264 (2015).
[49] V. Yu. Bodryakov. Thermodynamic Properties of Tantalum through the Whole Range of Solid State: Correlation Analysis and Self-Consistent Interpretation. Chapter 2 in the Book: R.M. Sultanov, U.M. Dzhemilev, V.Yu. Bodryakov, B.A. Greenberg, M.A. Ivanov, A.M. Patselov, A.V. Inozemtsev, M.S. Pushkin, S.V. Kuzmin, V.I. Lysak. “Tantalum: Geochemistry, Production and Potential Applications”/Ed. Harry Reyes. Nova Science Publishers, Inc., Hauppauge (NY, USA) (2015).
[50] V. Yu. Bodryakov, Open Sci. J. Mod. Phys. 2, 111 (2015).
[51] V. Yu. Bodryakov and E. V. Karpova. Ogneupory i Technicheskaya Keramika (Refractories and Technical Ceramics) [in Russian]. 10, 18 (2015).
[52] V. Yu. Bodryakov, High Temp. 54, 316 (2016).
[53] H. Fenichel and B. Serin, Phys. Rev. 142, 490 (1966).
[54] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. General Publishing Company, New York (2000).
[55] V. G. Manzheliĭ and Y. A. Freiman (ed.). Physics of cryocrystals. Amer. Inst of Physics, (1997).
[56] P. J. Shirron, M.J. DiPirro, S.M. Irish, S.M. Volz, M. Schulze, K. Blount, J. Arvidson, R.E. Dame, E. Cofie, and B.A. Thomas, Cryogenics. 39, 405 (1999).
[57] V. G. Manzheliĭ. Structure and Thermodynamic Properties of Cryocrystals: Handbook. Begell House Publishers, New York (1999).
[58] R. J. Hemley and P. Dera, Rev. Miner. Geochem. 41, 335 (2000).
[59] D. Acocella, G.K. Horton, and E.R. Cowley, Phys. Rev. B. 61, 8753 (2000).
[60] C. P. Herrero, Phys. Rev. B 65, 014112 (2001).
[61] R. J. Hemley and H. Mao, J. Low Temp. Phys. 122, 331 (2001).
[62] W. B. Holzapfel, M. Hartwig, and G. Reiß. J. Low Temp. Phys. 122, 401 (2001).
[63] A. I. Prokhvatilov. Plasticity and elasticity of cryocrystals: Handbook. Begell House Publishers, New York – Wallingford (2001).
[64] E. V. Manzheliı̆, Low Temp. Phys. 29, 333 (2003).
[65] S. Gupta and S. C. Goyal, Solid State Comm. 126, 297 (2003).
[66] A. I. Karasevskii and W. B. Holzapfel, Phys. Rev. B 67, 224301 (2003).
[67] S. Gupta and S. C. Goyal, Physica B: Condensed Matter. 352, 24 (2004).
[68] R. Ramírez and C.P. Herrero, Phys. Rev. B 72, 024303 (2005).
[69] E. T. Verkhovtseva, I. A. Gospodarev, A. V. Grishaev, S. I. Kovalenko, D. D. Solnyshkin, E. S. Syrkin, and S. B. Feodosyev, Low Temp. Phys. 29, 386 (2003).
[70] S. B. Feodosyev, I. A. Gospodarev, V. O. Kruglov, and E. V. Manzhelii, J. Low Temp. Phys. 139, 651 (2005).
[71] S. Hirabayashi and K. M. T. Yamada, J. Chem. Phys. 122, 244501 (2005).
[72] G. E. Moyano, P. Schwerdtfeger, and K. Rosciszewski, Phys. Rev. B 75, 024101 (2007).
[73] Y. A. Freiman and S. M. Tretyak, Low Temp. Phys. 33, 545 (2007).
[74] S. Wacke, K. Książek, and T. Górecki, Visnyk Lviv Univ. Ser. Physics. 40, 193 (2007).
[75] R. Ramirez and C. P. Herrero, J. Chem. Phys. 129, 204502 (2008).
[76] E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, Angew. Chem. Int. Ed. 47, 8207 (2008).
[77] P. Schwerdtfeger and A. Hermann, Phys. Rev. B. 80, 064106 (2009).
[78] E. P. Troitskaya, V. V. Chabanenko, E. E. Gorbenko, and N. V. Kuzovo, Low Temp. Phys. 35, 815 (2009).
[79] A. Hermann and P. Schwerdtfeger, J. Chem. Phys. 131, 244508 (2009).
[80] E. P. Troitskaya, V. V. Chabanenko, E. A. Pilipenko, I. V. Zhikharev, and I. I. Gorbenko, Phys. Solid State. 55, 2335 (2013).
[81] C. P. Herrero and R. Ramirez, J. Phys.: Condensed Matter. 26, 233201 (2014).
[82] M. Abbaspour and Z. Borzouie, Fluid Phase Equilib. 379, 167 (2014).
[83] E. P. Troitskaya, V. V. Rumyantsev, E. A. Pilipenko, and I. I. Gorbenko, J. Photonic Mater. Technol. 1, 46 (2015).
[84] H. Akbarzadeh and M. Abbaspoura, RSC Adv. 5, 11297 (2015).
[85] V. N. Varyukhin, E. P. Troitskaya, I. Gorbenko, E. A. Pilipenko, and V. V. Chabanenko, Phys. Stat. Solidi (b). 252, 709 (2015).
[86] I. I. Gorbenko, E. P. Troitskaya, and E. A. Pilipenko, Phys. Sol. State. 59, 132 (2017).
[87] K. Clusius, Z. phys. Chem. B 31, 459 (1936).
[88] G. L. Pollack, Rev. Mod. Phys. 36, 748 (1964).
[89] C. H. Fagerström and A.C. Hollis-Hallett. The Specific Heat of Solid Neon. P. 1092–1094, in: J. G. Daunt, D. O. Edwards, F. G. Milford, and M. Yakub (Eds.). Low Temperature Physics, LT9. Proc. 9th Int. Conf. Low Temp. Phys., Part B. Columbus (Ohio), August 31 – September 4, 1964. Springer Science + Business Media, LLC, New York (1965).
[90] D. N. Batchelder, D. L. Losee, and R. O. Simmons, Phys. Rev. 162, 767 (1967).
[91] W. E. Schoknecht. Equilibrium vacancy formation in crystalline Neon/PhD Thesis. Urbana (Illinois), Univ. of Illinois (1971).
[92] E. Somoza and H. Fenichel, Phys. Rev. B 3, 3434 (1971).
[93] J. C. Holste. Thermal Expansion of Solid Neon from 1 to 15 K/ Ph.D. Thesis, Ames (Iowa), Iowa State Univ. (1973).
[94] V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, Thermophysical Properties of Neon, Argon, Krypton, and Xenon, Moscow, Izd. Standartov (1976); London, Taylor and Francis (1988).
[95] Rare gas solids. Vol. II. Ed. By M. L. Klein and J. A. Venables. London – New York – San Francisco, Academic Press, 1977, 1242 p.
[96] F. A. Mauer and L. H. Bolz, J. Res. Nat. Bur. Stand. 65C, 225 (1961).
[97] L. H. Bolz and F. A. Mauer, in Advances in X-Ray Analysis, ed. by W. M. Mueller and M. Fay. Vol. 6. New York, Plenum Press (1963).
[98] D. N. Batchelder, D. L. Losee, and R. O. Simmons, Phys. Rev. 173, 873 (1968).
[99] J. C. Holste and C. A. Swenson, J. Low Temp. Phys. 18, 477 (1975).
[100] Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee. Thermophysical properties of matter. Vol. 13. Thermal Expansion: Nonmetallic Solids. New York, IFI/Plenum (1977).
[101] N. P. Gupta and B. Dayal, Phys. Stat. Solidi (b). 18, 731 (1966).
[102] P. A. Bezugly, R. O. Plakhotin, and L. M. Tarasenko, Sov. Phys. – Solid State. 12, 1199 (1970).
[103] R. Balzer, D. S. Kupperman, and R. O. Simmons, Phys. Rev. B 4, 3636 (1971).
[104] M. S. Kushwaha and S. S. Kushawaha, J. Phys. Soc. Japan. 46, 366 (1979).
[105] S. K. Mishra and T. N. Singh, Phys. Stat. Sol. (b). 154, 127 (1989).
[106] S. Gewurtz, H. Kiefte, D. Landheer, R. A. McLaren, and B. P. Stoicheff, Phys. Rev. Lett. 29, 1454 (1972).
[107] J. B. Lurie, J. Low Temp. Phys. 10, 751 (1973).
[108] J. W. Stewart, J. Phys. Chem. Solids. 1, 146 (1956).
[109] E. I. Voitovich, A. M. Tolkachev, and V. G. Manzhelii, J. Low Temp. Phys. 5, 435 (1971).
[110] J. Skalyo, V. J. Minkiewicz, G. Shirane, and W. B. Daniels, Phys. Rev. B 6, 4766 (1972).
[111] R. A. Aziz, D. H. Bowman, and C. C. Lim, Can. J. Phys. 50, 2027 (1972).
[112] M. S. Anderson, R. Q. Fugate, and C. A. Swenson, J. Low Temp. Phys. 10, 345 (1973).
[113] R. A. McLaren, H. Kiefte, D. Landheer, and B. P. Stoicheff, Phys. Rev. B 11, 1705 (1975).
[114] Y. Endoh, G. Shirane, and J. Skalyo, Phys. Rev. B 11, 1681 (1975).
[115] V. V. Goldman and M. L. Klein, J. Low Temp. Phys. 22, 501 (1976).
[116] F. Birch, J. Phys. Chem. Solids. 38, 175 (1977).
[117] Yu. V. Eremeichenkova, L. S. Metlov, and A.F. Morozov. Fizika i Tehnika Vysokih Davlenii (Physics and High Pressure Technics) 13, 34 (2003).
[118] URL: https://www.webelements.com/Neon/isotopes.html
[119] H. R. Glyde, Phys Rev. B 3, 3539 (1971).
[120] D. A. Imel, High density noble gas detectors and search for massive neutrinos in the β-decay of 35S/Ph. D. Thesis, Pasadena (California), CalTech. (1990).
[121] D. Yu. Akimov, A. I. Bolozdynya, D. L. Churakov, A. V. Koutchenkov, V. F. Kuzichev, V. N. Lebendenko, I. A. Rogovsky, M. Chen, V. Yu. Chepel, and V. V. Sushkov, Nucl. Instr. Methods Phys. Res. A327, 155 (1993).
[122] R. A. Michniaka, R. Alleaume, D. N. McKinsey, and J. M. Doyle, Nucl. Instr. Methods Phys. Res. A482, 387 (2002).
[123] E. Aprile, A. E. Bolotnikov, A. I. Bolozdynya, and T. Doke. Noble gas detectors. Weinheim, Wiley–VCH (2006).
[124] I. Lazanu and S. Lazanu, J. Cosmology and Astroparticle Phys. 2011, 013 (2011).
[125] J. Singh, K. G. Bailey, Z.-T. Lu, P. Mueller, T. P. O’Connor, C.-Y. Xu and X. Tang, Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions/American Physical Society, APS April Meeting 2013, April 13-16, 2013, abstract #Y9.005.
[126] L. Baudis, Phys. Dark Univ. 4, 50 (2014).
[127] J. Yoo, H. Cease, W. F. Jaskierny, D. Markley, R. B. Pahlka, D. Balakishiyeva, T. Saab, and M. Filipenko. Scalability study of solid xenon/FERMILAB-PUB-15-453-ND (2015).
[128] B. F. Figgins, Proc. Phys. Soc. 76, 732 (1960).
[129] P. Flubacher, A. J. Leadbetter and J. A. Morrison, Proc. Phys. Soc. (London). 78, 1449 (1961).
[130] O. K. Rice, J. Mitchell Soc. 12, 120 (1964).
[131] V. G. Manzhelii, V. G. Gavrilko, and E. I. Voitivich, Sov. Phys. – Solid State 9, 1483 (1967).
[132] L. Finegold and N. E. Phillips, Phys. Rev. 177, 1383 (1969).
[133] V. G. Manzhelii, E. A. Kosobutskaya, V. V. Sumarokov, A. N. Aleksandrovsky, Yu. A. Freiman, V. A. Popov, and V. A. Konstantionov, Fizika Nizkikh Temperatur [Low Temperature Physics] (in Russin). 12, 151 (1986).
[134] J. R. Barker and E. R. Dobbs, Phil. Mag. Series 7. 46, 1069 (1955).
[135] E. R. Dobbs, B. F. Figgins, G. O. Jones, D. C. Piercey, and D. P. Riley, Nature. 178, 483 (1956).
[136] R. H. Beaumont, H. Chihara, and J. A. Morrison, Proc. Phys. Soc. (London). 78, 1462 (1961).
[137] C. S. Barrett and L. Meyer, J. Chem. Phys. 41, 1078 (1964).
[138] O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Phil. Mag. 12, 1193 (1965).
[139] V. G. Manzhelii, V. G. Gavrilko, and E. I. Voitovich, Phys. Stat. Sol. (b). 17, K139 (1966).
[140] O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Phys. Rev. 150, 703 (1966).
[141] V. G. Gavrilko, V. G. Manzhelii, V. I. Kuchnev, and A. M. Tolkachev, Sov. Phys. – Solid State. 10, 3182 (1968).
[142] C. R. Tilford and C. A. Swenson, Phys. Rev. Lett. 22, 1296 (1969).
[143] D. C. Wallace. Thermodynamics of crystals. London – New York, John Wiley & Sons (1972).
[144] C. R. Tilford and C. A. Swenson, Phys. Rev. B 5, 719 (1972).
[145] L. A. Schwalbe and R. W. Wilkins, J. Chem. Phys. 72, 3130 (1980).
[146] A. I. Bondarenko, V. G. Gavrilko, and V. A. Popov, Fizika Nizkikh Temperatur [Low Temperature Physics] (in Russin). 10, 1191 (1984).
[147] K. Devlal and B. R. K. Gupta, Pramana. 69, 307 (2007).
[148] H. R. Moeller and C. H. Squire, Phys. Rev. 151, 689 (1966).
[149] M. S. Anderson and C. A. Swenson, J. Phys. Chem. Solids. 36, 145 (1975).
[150] O. I. Pursky and V. A. Konstantinov, Cond. Matter Physics. 10, 229 (2007).
[151] G. J. Keeler and D. N. Batchelder, J. Phys. C: Solid State Phys. 3, 510 (1970).
[152] A. O. Urvas, D. L. Losee, and R. O. Simmons, J. Phys. Chem. Solids. 28, 2269 (1967).
[153] B. L. Smith and C. J. Pings, J. Chem. Phys. 38, 825 (1963).
[154] M. Gsänger, H. Egger and E. Lüsher, Phys. Lett. A 27, 695 (1968).
[155] H. Meixner, P. Leiderer, P. Berberich and E. Lüscher, Phys. Letters. A 40, 257 (1972).
[156] S. Gewurtz and B. P. Stoicheff, Phys. Rev. B 10, 3487 (1974).
[157] G. Raghurama and R. Narayan, J. Phys. C: Solid State Phys. 18, 721 (1985).
[158] H. Kanzaki, J. Phys. Chem. Solids. 2, 107 (1957).
[159] A. J. E. Foreman and A. B. Lidiard, Phil. Mag. 8, 97 (1963).
[160] L. Jansen, Phil. Mag. 8, 1305 (1963).
[161] G. F. Nardelli, N. Terzi, J. Phys. Chem. Solids. 25, 815 (1964).
[162] B. L. Smith and J. A. Chapman, Phil. Mag. 15, 739 (1967).
[163] J. J. Burton, Phys. Rev. 182, 885 (1969).
[164] J. H. Crawford and L. M. Slifkin. Point Defects in Solids. Vol. 1. General and Ionic Crystals. New York – London, Plenum Press (1972).
[165] G. Jacucci and M. Ronchetti, Solid State Comm. 33, 35 (1980).
[166] B. F. Figgins and B. L. Smith, Phil. Mag. 5, 186 (1960).
[167] A. J. Eatwell and B. L. Smith, Phil. Mag. 6, 461 (1961).
[168] D. L. Losee and R. O. Simmons, Phys. Rev. 172, 944 (1968).
[169] V. G. Manzhelii, V. G. Gavrilko, and V. I. Kuchnev, Phys. Stat. Sol. (b). 34, K55 (1969).
[170] H. J. Coufal, R. Veith, P. Korpiun and E. Lüscher, J. Appl. Phys. 41, 5082 (1970).
[171] P. Korpiun and H. J. Coufal, Phys. Stat. Sol. (a). 6, 187 (1971).
[172] G. H. Cheesman and C. M. Soane, Proc. Phys. Soc. B 70, 700 (1957).
[173] J. Skalyo, Y. Endoh, and G. Shirane. Phys. Rev. B 9, 1797 (1974).
[174] P. A. Bezugly, L. M. Tarasenko, and O. I. Baryshevsky, Sov. Phys. – Solid State. 13, 2392 (1971).
[175] P. Korpiun, A. Burmeister and E. Lüsher, J. Phys. Chem. Solids. 33, 1411 (1972).
[176] J. A. Barker, M. L. Klein, and M. V. Bobetic, IBM J. Res. Develop. 20, 222 (1976).
[177] D. S. Kupperman and R. O. Simmons, J. Phys. C: Solid State Phys. 4, L5 (1971).
[178] H. J. Coufal, R. Veith, P. Korpiun, and E. Lüscher, Phys. Stat. Sol. (b). 38, K127 (1970).
[179] D. Landheer, H. E. Jackson, R. A. McLaren, and B. P. Stoicheff. Phys. Rev. B 13, 888 (1976).
[180] G. Nardelli and A. Repanal, Physica. 24, S182 (1958).
[181] D. L. Losee and R. O. Simmons, Phys. Rev. 172, 934 (1968).
[182] URL: http://astro.fnal.gov/science/dark-matter/solid-xenon/
[183] J. Yoo, H. Cease, W. F. Jaskierny, D. Markley, R. B. Pahlka, D. Balakishiyeva, T. Saab, and M. Filipenko. Scalability, scintillation readout and charge drift in a kilogram scale solid xenon particle detector/FERMILAB-PUB-14-402-E (2014).
[184] K. Clusius and L. Riccoboni, Z. phys. Chem. B 38, 81 (1937).
[185] J. R. Packard and C. A. Swenson, J. Phys. Chem. Solids. 24, 1405 (1963).
[186] J. U. Trefny and B. Serin, J. Low Temp. Phys. 1, 231 (1969).
[187] R. D. Sears and H. P. Klug, J. Chem. Phys. 37, 3002 (1962).
[188] V. G. Gavrilko and V. G. Manzhelii, Sov. Phys. – Solid State. 6, 2197 (1964).
[189] P. R. Granfors, A. T. Macrander, and R. O. Simmons, Phys. Rev. B 24, 4753 (1981).
[190] N. P. Gupta and R. K. Gupta, Can. J. Phys. 47, 617 (1969).
[191] N. A. Lurie, G. Shirane, and J. Scalyo, Phys. Rev. B 9, 2661 (1974).
[192] H. R. Glyde and J. A. Venables, J. Phys. Chem. Solids. 29, 1093 (1968).
[193] M. Doyama and R. M. J. Cotterill, Phys. Rev. B 1, 832 (1970).
[194] S. D. Druger, Phys. Rev. B 3, 1391 (1971).
[195] D. N. Card and P. W. M. Jacobs, Molec. Phys. 34, 1 (1977).
[196] H. Coufal, E. Lüsher, H. Micklitz, and R. E. Norberg. Rare Gas Solids. Springer-Verlag, Berlin–Heidelberg–New York–Tokyo (1984).
[197] L. A. Schwalbe, R. K. Crawford, H. H. Chen and R. A. Aziz, J. Chem. Phys. 66, 4493 (1977).
[198] S. B. Ko and W. K. Kim, Bull. Korean Chem. Soc. 2, 17 (1981).
[199] R. C. Kemp, W. R. G. Kemp, and P. W. Smart, Metrologia. 21, 43 (1985).
[200] C. E. Bryson, V. Cazcarra, and L. L. Levenson, J. Chem. Eng. Data. 19, 107 (1974).
[201] H. H. Chen, C. C. Lim, and R. A. Aziz, J. Chem. Thermodyn. 10, 649 (1978).

 

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!