Table of Contents
Table of Contents
Introduction
Chapter 1. Thermodynamic Grounds for Hypothesizing Bi-Linear Correlation between Heat Capacities and Volume Thermal Expansivities of Solids up to the Melting Points (B-Model)
Chapter 2. Computer Thermodynamic Modelling. Properties of the B-Model
Chapter 3. Evaluation of Thermodynamic Functions of Solids with the Use of B-Model for Validation (On the Example of Rare Gas Solids)
Conclusion
References
[1] W. F. Giaque and P. F. Meads, J. Am. Chem. Soc. 63, 1897 (1941).
[2] T. E. Pochapsky, Acta Metallurgica. 1, 747 (1953).
[3] K. K. Kelley. Contributions to the data on theoretical metallurgy. XIII. High temperature heat content, heat capacity and entropy data for the elements and inorganic compounds. US Government printing office, Washington (1960).
[4] R. J. Corruccini and J. J. Gniewek. Specific heats of technical solids at low temperatures. A compilation from the literature. NBS Monograph NBS-21. US Government Printing Office, Washington (1960).
[5] A. J. Leadbetter, J. Phys. C: Solid State Phys. 1, 1481 (1968).
[6] C. R. Brooks and R. E. Bingham, J. Phys. Chem. Solids. 29, 1553 (1968).
[7] E. H. Buyco and F. E. Davis, J. Chem. Eng. Data. 15, 518 (1970).
[8] L. A. Novitskii and I. G. Kozhevnikov, Teplofizicheskie Svoistva Materialov pri Nizkikh Temperaturakh (Thermophysical Properties of Materials at Low Temperatures), Mashinostroenie, Moscow (1975).
[9] R. A. Robie, B. S. Hemingway, and J. R. Fisher. Thermodynamic properties of minerals and related substances at 298,15 K (25 °C) and one atmosphere (1,013 Bars) pressure and at higher temperatures. Geological survey bulletin N. 1452. US Government printing office, Washington (1979).
[10] D. B. Downie and J. F. Martin, J. Chem. Thermodyn. 12, 779 (1980).
[11] L. V. Gurvich, V. I. Veits, V. A. Medvedev, V. A. Krachkuruzov, V. S. Yungman, V. A. Bergman, V. F. Baibuz, V. S. Iorish, V. N. Yurkov, S. I. Gorbov, I. I. Nazarenko, O. V. Dorofeeva, V. F. Kuratova, E. L. Osina, A. V. Gusarov, V. Ya. Leonidov, I. N. Przheval’skii, A. L. Rogatskii, Yu. M. Efremov, V. G. Ryabova, V. Yu. Zitserman, Yu. G. Hait, E. A. Shenyavskaya, M. E. Efimov, V. A. Kulemza, Yu. S. Khodeev, S. E. Tomberg, V. N. Vdovin, A. Ya. Yakobson and M. S. Demidova, Termodina-micheskie Svoistva Individual’nykh Veshchestv. Spravochnoe Izdanie v 4kh Tomakh (Thermodynamic Properties of Individual Substances: A Reference Book in Four Volumes), Glushko, V. P., Ed., vol. III, books 1-2, Nauka, Moscow (1981).
[12] M. E. Drits, P. B. Budberg, G. S. Burkhanov, A. M. Drits and V. M. Panovko, Svoistva Elementov. Spravochnoe Izdanie (Properties of Elements: A Reference Book), Drits, M. E., Ed., Metallurgiya, Moscow (1985).
[13] D. A. Ditmars, C. A. Plint, and R. C. Shukla, Int. J. Thermophys. 6, 499 (1985).
[14] P. D. Desai, Int. J. Thermophysics. 8, 621 (1987).
[15] Y. Takahashi, T. Azumi, and Y. Sekine, Thermochim. Acta. 139, 133 (1989).
[16] Handbook of Physical Quantities, Grigoriev, I. S. and Meilikhov, E. Z., Eds., CRC Press, Boca Raton, Florida (1996).
[17] M. W. Chase, Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data. Monograph 9. 1998. P. 1-1951.
[18] A. T. Dinsdale, SGTE Data for Pure Elements. NPL Materials Centre, Teddington, Middlesex, United Kingdom (2007).
[19] G. W. C. Kaye and T. H. Laby, General Physics: Specific Heat Capacities. URL: http://www.kayelaby.npl.co.uk/general_ physics/2_3/2_3_6.html.
[20] V. Yu. Bodryakov and A. A. Bykov, Russian Metallurgy (Metally). 2016, 450 (2016).
[21] A. J. C. Wilson, Proc. Phys. Soc., 53, 235 (1941).
[22] F. C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941).
[23] E. Huzan, C. P. Abbiss and G. O. Jones, Phil. Mag. 6, 277 (1961).
[24] K. Andres, Cryogenics. 2, 93 (1961).
[25] R. J. Corruccini and J. J. Gnievek, Thermal Expansion of Technical Solids at Low Temperatures: A Compilation from the Literature. Monograph NBS-29. US Government Printing Office, Washington (1961).
[26] R. M. Nicklow and R. A. Young, Phys. Rev. 129, 1936 (1963).
[27] R. H. Carr and C. A. Swenson, Cryogenics. 4, 76 (1964).
[28] D. B. Fraser and A. C. Hollis Hallett, Can. J. Phys. 43, 193 (1965).
[29] A. J. Leadbetter, J. Phys. C: Solid State Phys. 1, 1489 (1968).
[30] P. D. Pathak and N. G. Vasavada, J. Phys. C: Solid State Phys. 3, L44 (1970).
[31] M. E. Straumanis and C. L. Woodward, Acta Cryst. A. 27, 549 (1971).
[32] F. G. Awad and D. Gugan, Cryogenics. 11, 414 (1971).
[33] J. G. Collins, G. K. White and C. A. Swenson, J. Low Temp. Phys. 10, 69 (1973).
[34] S. I. Novikova, Teplovoe Rasshirenie Tverdykh Tel. Spravochnoe Izdanie (Thermal Expansion of Solids: A Reference Book). Nauka, Moscow (1974).
[35] Y. S. Touloukian, R. K. Kirby, R. E. Taylor and P. D. Desai, Thermophysical Properties of Matter. V. 12. Thermal Expansion: Metallic Elements and Alloys. IFI/Plenum, New York (1975).
[36] F. R. Kroeger and C. A. Swenson, J. Appl. Phys. 48, 853 (1977).
[37] B. Hallstedt, Calphad. 31, 292 (2007).
[38] G. W. C. Kaye and T. H. Laby, General Physics: Thermal Expansion. URL: http://www.kayelaby.npl.co.uk/general_
physics/2_3/2_3_5.html
[39] V. Yu. Bodryakov, Tech. Physics. 58, 722 (2013).
[40] V. Yu. Bodryakov, High Temp. 52, 840 (2014).
[41] V. Yu. Bodryakov, Phys. Solid State. 56, 2359 (2014).
[42] V. Yu. Bodryakov, Open Sci. J. Mod. Phys. 2, 10 (2015).
[43] V. Yu. Bodryakov and A. A. Bykov, Glass and Ceramics. 72, 67 (2015).
[44] V. Yu. Bodryakov, Inorg. Mater. 51, 172 (2015).
[45] V. Yu. Bodryakov, Tech. Phys. 60, 381 (2015).
[46] V. Yu. Bodryakov, Open Sci. J. Mod. Phys. 2, 50 (2015).
[47] V. Yu. Bodryakov, High Temp. 53, 643 (2015).
[48] V. Yu. Bodryakov and Yu. N. Babintsev, Phys. Solid State. 57, 1264 (2015).
[49] V. Yu. Bodryakov. Thermodynamic Properties of Tantalum through the Whole Range of Solid State: Correlation Analysis and Self-Consistent Interpretation. Chapter 2 in the Book: R.M. Sultanov, U.M. Dzhemilev, V.Yu. Bodryakov, B.A. Greenberg, M.A. Ivanov, A.M. Patselov, A.V. Inozemtsev, M.S. Pushkin, S.V. Kuzmin, V.I. Lysak. “Tantalum: Geochemistry, Production and Potential Applications”/Ed. Harry Reyes. Nova Science Publishers, Inc., Hauppauge (NY, USA) (2015).
[50] V. Yu. Bodryakov, Open Sci. J. Mod. Phys. 2, 111 (2015).
[51] V. Yu. Bodryakov and E. V. Karpova. Ogneupory i Technicheskaya Keramika (Refractories and Technical Ceramics) [in Russian]. 10, 18 (2015).
[52] V. Yu. Bodryakov, High Temp. 54, 316 (2016).
[53] H. Fenichel and B. Serin, Phys. Rev. 142, 490 (1966).
[54] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. General Publishing Company, New York (2000).
[55] V. G. Manzheliĭ and Y. A. Freiman (ed.). Physics of cryocrystals. Amer. Inst of Physics, (1997).
[56] P. J. Shirron, M.J. DiPirro, S.M. Irish, S.M. Volz, M. Schulze, K. Blount, J. Arvidson, R.E. Dame, E. Cofie, and B.A. Thomas, Cryogenics. 39, 405 (1999).
[57] V. G. Manzheliĭ. Structure and Thermodynamic Properties of Cryocrystals: Handbook. Begell House Publishers, New York (1999).
[58] R. J. Hemley and P. Dera, Rev. Miner. Geochem. 41, 335 (2000).
[59] D. Acocella, G.K. Horton, and E.R. Cowley, Phys. Rev. B. 61, 8753 (2000).
[60] C. P. Herrero, Phys. Rev. B 65, 014112 (2001).
[61] R. J. Hemley and H. Mao, J. Low Temp. Phys. 122, 331 (2001).
[62] W. B. Holzapfel, M. Hartwig, and G. Reiß. J. Low Temp. Phys. 122, 401 (2001).
[63] A. I. Prokhvatilov. Plasticity and elasticity of cryocrystals: Handbook. Begell House Publishers, New York – Wallingford (2001).
[64] E. V. Manzheliı̆, Low Temp. Phys. 29, 333 (2003).
[65] S. Gupta and S. C. Goyal, Solid State Comm. 126, 297 (2003).
[66] A. I. Karasevskii and W. B. Holzapfel, Phys. Rev. B 67, 224301 (2003).
[67] S. Gupta and S. C. Goyal, Physica B: Condensed Matter. 352, 24 (2004).
[68] R. Ramírez and C.P. Herrero, Phys. Rev. B 72, 024303 (2005).
[69] E. T. Verkhovtseva, I. A. Gospodarev, A. V. Grishaev, S. I. Kovalenko, D. D. Solnyshkin, E. S. Syrkin, and S. B. Feodosyev, Low Temp. Phys. 29, 386 (2003).
[70] S. B. Feodosyev, I. A. Gospodarev, V. O. Kruglov, and E. V. Manzhelii, J. Low Temp. Phys. 139, 651 (2005).
[71] S. Hirabayashi and K. M. T. Yamada, J. Chem. Phys. 122, 244501 (2005).
[72] G. E. Moyano, P. Schwerdtfeger, and K. Rosciszewski, Phys. Rev. B 75, 024101 (2007).
[73] Y. A. Freiman and S. M. Tretyak, Low Temp. Phys. 33, 545 (2007).
[74] S. Wacke, K. Książek, and T. Górecki, Visnyk Lviv Univ. Ser. Physics. 40, 193 (2007).
[75] R. Ramirez and C. P. Herrero, J. Chem. Phys. 129, 204502 (2008).
[76] E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, Angew. Chem. Int. Ed. 47, 8207 (2008).
[77] P. Schwerdtfeger and A. Hermann, Phys. Rev. B. 80, 064106 (2009).
[78] E. P. Troitskaya, V. V. Chabanenko, E. E. Gorbenko, and N. V. Kuzovo, Low Temp. Phys. 35, 815 (2009).
[79] A. Hermann and P. Schwerdtfeger, J. Chem. Phys. 131, 244508 (2009).
[80] E. P. Troitskaya, V. V. Chabanenko, E. A. Pilipenko, I. V. Zhikharev, and I. I. Gorbenko, Phys. Solid State. 55, 2335 (2013).
[81] C. P. Herrero and R. Ramirez, J. Phys.: Condensed Matter. 26, 233201 (2014).
[82] M. Abbaspour and Z. Borzouie, Fluid Phase Equilib. 379, 167 (2014).
[83] E. P. Troitskaya, V. V. Rumyantsev, E. A. Pilipenko, and I. I. Gorbenko, J. Photonic Mater. Technol. 1, 46 (2015).
[84] H. Akbarzadeh and M. Abbaspoura, RSC Adv. 5, 11297 (2015).
[85] V. N. Varyukhin, E. P. Troitskaya, I. Gorbenko, E. A. Pilipenko, and V. V. Chabanenko, Phys. Stat. Solidi (b). 252, 709 (2015).
[86] I. I. Gorbenko, E. P. Troitskaya, and E. A. Pilipenko, Phys. Sol. State. 59, 132 (2017).
[87] K. Clusius, Z. phys. Chem. B 31, 459 (1936).
[88] G. L. Pollack, Rev. Mod. Phys. 36, 748 (1964).
[89] C. H. Fagerström and A.C. Hollis-Hallett. The Specific Heat of Solid Neon. P. 1092–1094, in: J. G. Daunt, D. O. Edwards, F. G. Milford, and M. Yakub (Eds.). Low Temperature Physics, LT9. Proc. 9th Int. Conf. Low Temp. Phys., Part B. Columbus (Ohio), August 31 – September 4, 1964. Springer Science + Business Media, LLC, New York (1965).
[90] D. N. Batchelder, D. L. Losee, and R. O. Simmons, Phys. Rev. 162, 767 (1967).
[91] W. E. Schoknecht. Equilibrium vacancy formation in crystalline Neon/PhD Thesis. Urbana (Illinois), Univ. of Illinois (1971).
[92] E. Somoza and H. Fenichel, Phys. Rev. B 3, 3434 (1971).
[93] J. C. Holste. Thermal Expansion of Solid Neon from 1 to 15 K/ Ph.D. Thesis, Ames (Iowa), Iowa State Univ. (1973).
[94] V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, Thermophysical Properties of Neon, Argon, Krypton, and Xenon, Moscow, Izd. Standartov (1976); London, Taylor and Francis (1988).
[95] Rare gas solids. Vol. II. Ed. By M. L. Klein and J. A. Venables. London – New York – San Francisco, Academic Press, 1977, 1242 p.
[96] F. A. Mauer and L. H. Bolz, J. Res. Nat. Bur. Stand. 65C, 225 (1961).
[97] L. H. Bolz and F. A. Mauer, in Advances in X-Ray Analysis, ed. by W. M. Mueller and M. Fay. Vol. 6. New York, Plenum Press (1963).
[98] D. N. Batchelder, D. L. Losee, and R. O. Simmons, Phys. Rev. 173, 873 (1968).
[99] J. C. Holste and C. A. Swenson, J. Low Temp. Phys. 18, 477 (1975).
[100] Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee. Thermophysical properties of matter. Vol. 13. Thermal Expansion: Nonmetallic Solids. New York, IFI/Plenum (1977).
[101] N. P. Gupta and B. Dayal, Phys. Stat. Solidi (b). 18, 731 (1966).
[102] P. A. Bezugly, R. O. Plakhotin, and L. M. Tarasenko, Sov. Phys. – Solid State. 12, 1199 (1970).
[103] R. Balzer, D. S. Kupperman, and R. O. Simmons, Phys. Rev. B 4, 3636 (1971).
[104] M. S. Kushwaha and S. S. Kushawaha, J. Phys. Soc. Japan. 46, 366 (1979).
[105] S. K. Mishra and T. N. Singh, Phys. Stat. Sol. (b). 154, 127 (1989).
[106] S. Gewurtz, H. Kiefte, D. Landheer, R. A. McLaren, and B. P. Stoicheff, Phys. Rev. Lett. 29, 1454 (1972).
[107] J. B. Lurie, J. Low Temp. Phys. 10, 751 (1973).
[108] J. W. Stewart, J. Phys. Chem. Solids. 1, 146 (1956).
[109] E. I. Voitovich, A. M. Tolkachev, and V. G. Manzhelii, J. Low Temp. Phys. 5, 435 (1971).
[110] J. Skalyo, V. J. Minkiewicz, G. Shirane, and W. B. Daniels, Phys. Rev. B 6, 4766 (1972).
[111] R. A. Aziz, D. H. Bowman, and C. C. Lim, Can. J. Phys. 50, 2027 (1972).
[112] M. S. Anderson, R. Q. Fugate, and C. A. Swenson, J. Low Temp. Phys. 10, 345 (1973).
[113] R. A. McLaren, H. Kiefte, D. Landheer, and B. P. Stoicheff, Phys. Rev. B 11, 1705 (1975).
[114] Y. Endoh, G. Shirane, and J. Skalyo, Phys. Rev. B 11, 1681 (1975).
[115] V. V. Goldman and M. L. Klein, J. Low Temp. Phys. 22, 501 (1976).
[116] F. Birch, J. Phys. Chem. Solids. 38, 175 (1977).
[117] Yu. V. Eremeichenkova, L. S. Metlov, and A.F. Morozov. Fizika i Tehnika Vysokih Davlenii (Physics and High Pressure Technics) 13, 34 (2003).
[118] URL: https://www.webelements.com/Neon/isotopes.html
[119] H. R. Glyde, Phys Rev. B 3, 3539 (1971).
[120] D. A. Imel, High density noble gas detectors and search for massive neutrinos in the β-decay of 35S/Ph. D. Thesis, Pasadena (California), CalTech. (1990).
[121] D. Yu. Akimov, A. I. Bolozdynya, D. L. Churakov, A. V. Koutchenkov, V. F. Kuzichev, V. N. Lebendenko, I. A. Rogovsky, M. Chen, V. Yu. Chepel, and V. V. Sushkov, Nucl. Instr. Methods Phys. Res. A327, 155 (1993).
[122] R. A. Michniaka, R. Alleaume, D. N. McKinsey, and J. M. Doyle, Nucl. Instr. Methods Phys. Res. A482, 387 (2002).
[123] E. Aprile, A. E. Bolotnikov, A. I. Bolozdynya, and T. Doke. Noble gas detectors. Weinheim, Wiley–VCH (2006).
[124] I. Lazanu and S. Lazanu, J. Cosmology and Astroparticle Phys. 2011, 013 (2011).
[125] J. Singh, K. G. Bailey, Z.-T. Lu, P. Mueller, T. P. O’Connor, C.-Y. Xu and X. Tang, Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions/American Physical Society, APS April Meeting 2013, April 13-16, 2013, abstract #Y9.005.
[126] L. Baudis, Phys. Dark Univ. 4, 50 (2014).
[127] J. Yoo, H. Cease, W. F. Jaskierny, D. Markley, R. B. Pahlka, D. Balakishiyeva, T. Saab, and M. Filipenko. Scalability study of solid xenon/FERMILAB-PUB-15-453-ND (2015).
[128] B. F. Figgins, Proc. Phys. Soc. 76, 732 (1960).
[129] P. Flubacher, A. J. Leadbetter and J. A. Morrison, Proc. Phys. Soc. (London). 78, 1449 (1961).
[130] O. K. Rice, J. Mitchell Soc. 12, 120 (1964).
[131] V. G. Manzhelii, V. G. Gavrilko, and E. I. Voitivich, Sov. Phys. – Solid State 9, 1483 (1967).
[132] L. Finegold and N. E. Phillips, Phys. Rev. 177, 1383 (1969).
[133] V. G. Manzhelii, E. A. Kosobutskaya, V. V. Sumarokov, A. N. Aleksandrovsky, Yu. A. Freiman, V. A. Popov, and V. A. Konstantionov, Fizika Nizkikh Temperatur [Low Temperature Physics] (in Russin). 12, 151 (1986).
[134] J. R. Barker and E. R. Dobbs, Phil. Mag. Series 7. 46, 1069 (1955).
[135] E. R. Dobbs, B. F. Figgins, G. O. Jones, D. C. Piercey, and D. P. Riley, Nature. 178, 483 (1956).
[136] R. H. Beaumont, H. Chihara, and J. A. Morrison, Proc. Phys. Soc. (London). 78, 1462 (1961).
[137] C. S. Barrett and L. Meyer, J. Chem. Phys. 41, 1078 (1964).
[138] O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Phil. Mag. 12, 1193 (1965).
[139] V. G. Manzhelii, V. G. Gavrilko, and E. I. Voitovich, Phys. Stat. Sol. (b). 17, K139 (1966).
[140] O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Phys. Rev. 150, 703 (1966).
[141] V. G. Gavrilko, V. G. Manzhelii, V. I. Kuchnev, and A. M. Tolkachev, Sov. Phys. – Solid State. 10, 3182 (1968).
[142] C. R. Tilford and C. A. Swenson, Phys. Rev. Lett. 22, 1296 (1969).
[143] D. C. Wallace. Thermodynamics of crystals. London – New York, John Wiley & Sons (1972).
[144] C. R. Tilford and C. A. Swenson, Phys. Rev. B 5, 719 (1972).
[145] L. A. Schwalbe and R. W. Wilkins, J. Chem. Phys. 72, 3130 (1980).
[146] A. I. Bondarenko, V. G. Gavrilko, and V. A. Popov, Fizika Nizkikh Temperatur [Low Temperature Physics] (in Russin). 10, 1191 (1984).
[147] K. Devlal and B. R. K. Gupta, Pramana. 69, 307 (2007).
[148] H. R. Moeller and C. H. Squire, Phys. Rev. 151, 689 (1966).
[149] M. S. Anderson and C. A. Swenson, J. Phys. Chem. Solids. 36, 145 (1975).
[150] O. I. Pursky and V. A. Konstantinov, Cond. Matter Physics. 10, 229 (2007).
[151] G. J. Keeler and D. N. Batchelder, J. Phys. C: Solid State Phys. 3, 510 (1970).
[152] A. O. Urvas, D. L. Losee, and R. O. Simmons, J. Phys. Chem. Solids. 28, 2269 (1967).
[153] B. L. Smith and C. J. Pings, J. Chem. Phys. 38, 825 (1963).
[154] M. Gsänger, H. Egger and E. Lüsher, Phys. Lett. A 27, 695 (1968).
[155] H. Meixner, P. Leiderer, P. Berberich and E. Lüscher, Phys. Letters. A 40, 257 (1972).
[156] S. Gewurtz and B. P. Stoicheff, Phys. Rev. B 10, 3487 (1974).
[157] G. Raghurama and R. Narayan, J. Phys. C: Solid State Phys. 18, 721 (1985).
[158] H. Kanzaki, J. Phys. Chem. Solids. 2, 107 (1957).
[159] A. J. E. Foreman and A. B. Lidiard, Phil. Mag. 8, 97 (1963).
[160] L. Jansen, Phil. Mag. 8, 1305 (1963).
[161] G. F. Nardelli, N. Terzi, J. Phys. Chem. Solids. 25, 815 (1964).
[162] B. L. Smith and J. A. Chapman, Phil. Mag. 15, 739 (1967).
[163] J. J. Burton, Phys. Rev. 182, 885 (1969).
[164] J. H. Crawford and L. M. Slifkin. Point Defects in Solids. Vol. 1. General and Ionic Crystals. New York – London, Plenum Press (1972).
[165] G. Jacucci and M. Ronchetti, Solid State Comm. 33, 35 (1980).
[166] B. F. Figgins and B. L. Smith, Phil. Mag. 5, 186 (1960).
[167] A. J. Eatwell and B. L. Smith, Phil. Mag. 6, 461 (1961).
[168] D. L. Losee and R. O. Simmons, Phys. Rev. 172, 944 (1968).
[169] V. G. Manzhelii, V. G. Gavrilko, and V. I. Kuchnev, Phys. Stat. Sol. (b). 34, K55 (1969).
[170] H. J. Coufal, R. Veith, P. Korpiun and E. Lüscher, J. Appl. Phys. 41, 5082 (1970).
[171] P. Korpiun and H. J. Coufal, Phys. Stat. Sol. (a). 6, 187 (1971).
[172] G. H. Cheesman and C. M. Soane, Proc. Phys. Soc. B 70, 700 (1957).
[173] J. Skalyo, Y. Endoh, and G. Shirane. Phys. Rev. B 9, 1797 (1974).
[174] P. A. Bezugly, L. M. Tarasenko, and O. I. Baryshevsky, Sov. Phys. – Solid State. 13, 2392 (1971).
[175] P. Korpiun, A. Burmeister and E. Lüsher, J. Phys. Chem. Solids. 33, 1411 (1972).
[176] J. A. Barker, M. L. Klein, and M. V. Bobetic, IBM J. Res. Develop. 20, 222 (1976).
[177] D. S. Kupperman and R. O. Simmons, J. Phys. C: Solid State Phys. 4, L5 (1971).
[178] H. J. Coufal, R. Veith, P. Korpiun, and E. Lüscher, Phys. Stat. Sol. (b). 38, K127 (1970).
[179] D. Landheer, H. E. Jackson, R. A. McLaren, and B. P. Stoicheff. Phys. Rev. B 13, 888 (1976).
[180] G. Nardelli and A. Repanal, Physica. 24, S182 (1958).
[181] D. L. Losee and R. O. Simmons, Phys. Rev. 172, 934 (1968).
[182] URL: http://astro.fnal.gov/science/dark-matter/solid-xenon/
[183] J. Yoo, H. Cease, W. F. Jaskierny, D. Markley, R. B. Pahlka, D. Balakishiyeva, T. Saab, and M. Filipenko. Scalability, scintillation readout and charge drift in a kilogram scale solid xenon particle detector/FERMILAB-PUB-14-402-E (2014).
[184] K. Clusius and L. Riccoboni, Z. phys. Chem. B 38, 81 (1937).
[185] J. R. Packard and C. A. Swenson, J. Phys. Chem. Solids. 24, 1405 (1963).
[186] J. U. Trefny and B. Serin, J. Low Temp. Phys. 1, 231 (1969).
[187] R. D. Sears and H. P. Klug, J. Chem. Phys. 37, 3002 (1962).
[188] V. G. Gavrilko and V. G. Manzhelii, Sov. Phys. – Solid State. 6, 2197 (1964).
[189] P. R. Granfors, A. T. Macrander, and R. O. Simmons, Phys. Rev. B 24, 4753 (1981).
[190] N. P. Gupta and R. K. Gupta, Can. J. Phys. 47, 617 (1969).
[191] N. A. Lurie, G. Shirane, and J. Scalyo, Phys. Rev. B 9, 2661 (1974).
[192] H. R. Glyde and J. A. Venables, J. Phys. Chem. Solids. 29, 1093 (1968).
[193] M. Doyama and R. M. J. Cotterill, Phys. Rev. B 1, 832 (1970).
[194] S. D. Druger, Phys. Rev. B 3, 1391 (1971).
[195] D. N. Card and P. W. M. Jacobs, Molec. Phys. 34, 1 (1977).
[196] H. Coufal, E. Lüsher, H. Micklitz, and R. E. Norberg. Rare Gas Solids. Springer-Verlag, Berlin–Heidelberg–New York–Tokyo (1984).
[197] L. A. Schwalbe, R. K. Crawford, H. H. Chen and R. A. Aziz, J. Chem. Phys. 66, 4493 (1977).
[198] S. B. Ko and W. K. Kim, Bull. Korean Chem. Soc. 2, 17 (1981).
[199] R. C. Kemp, W. R. G. Kemp, and P. W. Smart, Metrologia. 21, 43 (1985).
[200] C. E. Bryson, V. Cazcarra, and L. L. Levenson, J. Chem. Eng. Data. 19, 107 (1974).
[201] H. H. Chen, C. C. Lim, and R. A. Aziz, J. Chem. Thermodyn. 10, 649 (1978).