Banded Iron Formations to Iron Ore: An Integrated Genesis Model

Desmond Fitzgerald Lascelles
University of Western Australia, Australia

Series: Geology and Mineralogy Research Developments
BISAC: SCI048000

Clear

$95.00

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

From the first attempts to understand the origin of giant iron ore deposits, numerous false assumptions have been used as the basis of genesis models that have become standard and unquestioned, with later research generally seeking to find evidence supporting the existing models and ignoring contrary evidence. Many models were constructed based on extremely rare features, and their absence in the global abundance of iron formations was not considered important since there was no understanding of the major sedimentary structures, i.e. laminations and banding. Inconsistencies within the hypothetical models are either ignored or excused by proposing special circumstances, but no one considers that the models might be wrong or have only limited application.

Many hypotheses regarding Earth’s history have been postulated from the difference between Phanerozoic and Precambrian iron-formations. In particular, the development of an oxygenated atmosphere has been deduced from the supposed evolution of iron-formations. The subject has provided a fertile field for research and models of Earth’s history, but without clear knowledge of the sedimentation, diagenesis and metamorphism of BIFs (branded iron formations), such models are speculative or even irrelevant. Since these models on the genesis and distribution of BIF were used as proxies to answer questions regarding the composition of the early oceans and atmosphere, weathering and transport conditions on early land surface, volcanism and continental development in the Archean eon, and as they affect exploration for the largest volume and most basic of industrial metals, they have an importance beyond academic sedimentary and stratigraphic interest.

The aim of this book is to present a model for the origin of BIFs and derived high-grade iron ore deposits with global applications that are still subject to correction and change as new information becomes available and are free of illogical assumptions which do not conflict with either field observations or basic chemistry and physics.

Preface

Section 1. The Genesis of Banded Iron Formations

Chapter 1. History of Banded Iron Formation Research

Chapter 2. The New Model

Section 2. The Origin of BIF-Derived High-Grade Iron Ore Deposits

Chapter 3. Introduction

Chapter 4. Formation Processes of BIF-Derived High-Grade Iron Ore Deposits

Section 3. Pisolitic Iron Ore Deposits

Chapter 5. Formation of Pisoliths

Chapter 6. Ore Grade Iron Pisolites

Index

Preface

Braterman, P.S. and Cairns-Smith, A.G., 1987. Iron photoprecipitation and genesis of the banded iron-formations: in Appel, P. W. U., and LaBerge, G. L., eds., Precambrian Iron-Formations: Theophrastus, Athens, p. 215-245.
Cloud, P., 1973. Paleoecological significance of the banded iron formation: Economic Geology, 68: 1135-1143.
Cloud, P., 1983. Banded iron-formation - a gradualist's dilemma: in Trendall, A. F., and Morris, R. C., eds., Banded Iron-formation: Facts and Problems: Amsterdam, Elsevier, p. 401-416.
Drever, J.I., 1974. Geochemical model for the origin of Precambrian banded iron formations: Geological Society of America Bulletin, 35: 1099-1106.
Ewers, W.E., 1983. Chemical factors in the deposition and diagenesis of banded iron-formation: in Trendall, A. F. and Morris, R. C., eds., Banded Iron-formation: Facts and Problems, Elseviers Science Publishers. p. 491-512.
Fleck, L., 1979. The genesis and development of a scientific fact. University of Chicago Press.
Garrels, R.M., Perry Jr., E. A. and Mackenzie, F. T., 1973. Genesis of Precambrian Iron-formations and the development of atmospheric oxygen: Economic Geology, 68: 1173-1179.
Holland, H.D., 1973. The Oceans: A possible source of iron in iron-formations: Economic Geology, 68: 1169-1172.
Holland, H.D., 2006. The oxygenation of the atmosphere and oceans: Philosophical Transactions of the Royal Society, B, 361: 903-915.
James, H.L., 1983. Distribution of banded iron-formation in space and time: in Trendall, A. F. and Morris, R. C., eds., Banded Iron -Formation: Facts and Problems, Elsevier, Amsterdam, p. 471-490.
Kappler, A., Pasquero, C., Konhauser, K.O. and Newman, D.K., 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe (ll)-oxidizing bacteria: Geology, 33: 865-868.
Konhauser, O., 1998. Diversity of bacterial iron mineralization. Earth Science Reviews, 43: 91-121.
Konhauser, K.O., Hamade, T., Raiswell, R., Morris, R.C., Ferris, F.G., Southam, G. and Canfield, D.E., 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30: 1079–1082.
Kuhn, T.S., 1962. The structure of scientific revolutions. University of Chicago Press.
Kump, L.R. and Holland, H.D., 1992. Iron in Precambrian rocks: implications for the global oxygen budget of the ancient Earth: Geochimica et Cosmochimica Acta, 56: 3217-3223.
Kump, L.R., Kasting, J.F. and Barley, M.E., 2001. Rise of atmospheric oxygen and the “upside-down” Archaean mantle: Geochemistry, Geophysics, Geosystems, 2: 1025-1035.
Kuo, P.H., Holland, H.D. and Danielson, A., 1993. Late Archean atmospheric CO2: Annual Meeting of Geological Society of America, Boston, 1993, p. A89.
La Berge, G.L., 1966. Altered pyroclastic rocks in iron formation in the Hamersley Range. Western Australia: Economic Geology, 61: 147-161.
La Berge, G.L., 1973. Possible biological origin of Precambrian iron-formations: Economic Geology, 68: 1098-1109.
Lane, S.N., 2012. Seeking good peer review in geomorphology. Earth Surface Processes and Landforms, 37 (1):3-8.
Lepp, H. and Goldich, S.S., 1964. Origin of Precambrian iron-formations: Economic Geology, 59: 1025-1060.
Morris, R.C., 1980. A textural and mineralogical study of the relationship of iron ore to banded iron-formation in the Hamersley Iron Province of Western Australia: Economic Geology, 75: 184-209.
Morris, R.C., 1993. Genetic modeling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia: in Blake, T. S., & Meakins, A., Archean and early Proterozoic geology of the Pilbara Region, Western Australia: Precambrian Research, 60: 243-286.
Morris, R.C. 1988. The goethitic channel ores of the Hamersley Province; a pilot study of the “Robe Pisolite.” CSIRO, Division of Exploration Geoscience, Restricted Report No. MG 70R, Perth.
Towe, K.M. 1983. Precambrian atmospheric oxygen and banded iron formations: a delayed ocean model; Precambrian Research, 20: 161-170.
Trendall, A.F. and Blockley, J.G., 1970. The iron formations of the Precambrian Hamersley Group, Western Australia, with special reference to the associated crocidolite: Bulletin 119, Geological Survey of Western Australia, Perth. 353p.
van Loon, A.J., 2004. From speculation to model: the challenge of launching new ideas in the earth sciences: Earth-Science Reviews, 65: 305-313

Chapter 2

Abbott, D. and Isley, A., 2001. Oceanic upwelling and mantle-plume activity: Paleomagnetic tests of ideas on the source of the Fe in early Precambrian iron formations: in Ernst, R.E. and Buchan, K.L., eds. Mantle Plumes: their Identification through Time: Geological Society of America Special Paper 352, p. 323-339.
Albarede, F., Ballhaus, C., Blichert-Toft, J., Lee, C-T., Marty, B., Moynier, F., Yin, Q-Z., 2013. Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus. 222: 44-52.
Anbar, A.D. and Holland, H.D., 1992. The photochemistry of manganese and the origin of BIF: Geochimica et cosmochimica Acta, 56: 2595-2603.
Angerer T. and Hagemann, S.G., 2010. The BIF-hosted high-grade iron ore deposits in the Archean Koolyanobbing Greenstone Belt, Western Australia: Structural control on synorogenic- and weathering-related magnetite-, hematite- and goethite-rich iron ore. Economic Geology, 105: 917-945.
Appel, P.W.U., 1987. Geochemistry of the Early Archaean Isua Iron-Formation, West Greenland: in Appel, P.W.U. and LaBerge,G.L., eds., Precambrian Iron-formations, Theophrastus Publications, Athens. P. 31-68.
Barley, M.E., Bekker, A., and Krapez, B., 2005, Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen: Earth and Planetary Science Letters, 238: 156-171.
Barley, M.E., Pickard, A.L. and Sylvester, P.J., 1997. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago: Nature, 385: 55-58.
Barghoorn, E.S. and Tyler, S.A., 1965. Microorganisms from the Gunflint Chert. Science, 147: 563-577.
Barrett, T.J. and Fralick, P.W., 1985. Sediment redeposition in Archaean iron-formation: examples from the Beardmore-Geraldton greenstone belt, Ontario: Journal of Sedimentary Petrology, 55: 205-212.
Barrett, T.J. and Fralick, P.W., 1989. Turbidites and iron formations, Beardmore-Geraldton, Ontario: application of a combined ramp/fan model to Archaean clastic and chemical sedimentation: Sedimentology, 36: 221-234.
Bayley, R.W. and James, H.L., 1973. Precambrian iron-formations of the United States: Economic Geology, 68: 934-959.
Berkner, L.V. and Marshall, L.C., 1964. The history of growth of oxygen in the Earth's atmosphere. in Brancazio, P. J., and Cameron, A. G. W., eds., The origin and evolution of atmospheres and oceans. John Wiley & Sons, Inc., New York, p. 102-126.
Berkner, L.V. and Marshall, L.C., 1965. On the origin and rise of oxygen concentration in the earth's atmosphere. Journal of Atmospheric Science, 22: 225-261.
Beukes, N.J., 1973. Precambrian iron-formations of Southern Africa: Economic Geology, 68: 960-1004.
Beukes, N.J., 1980. Lithofacies and stratigraphy of the Kuruman and Griquatown iron-formations, Northern Cape Province, South Africa: Transactions of the Geological Society of South Africa, 83: 69-86.
Beukes, N.J., 1984. Sedimentology of the Kuruman and Griquatown iron-formations, Transvaal Supergroup, Griqualand West, South Africa: Precambrian Research, 24: 47-84.
Beukes, N.J., Gutzmer, J., Dorland, H. and Szabo, A., 2000. Paleoproterozoic laterites and iron ores: International Geological Congress 2000, Rio de Janeiro, Brazil.
Beukes, N.J. and Klein, C., 1990. Geochemistry and sedimentology of a facies transition - from microbanded to granular iron-formation - in the early Proterozoic Transvaal Supergroup, South Africa: Precambrian Research, 47: 99-139.
Beukes, N.J. and Klein, C., 1992. Models for iron-formation deposition: in Schopf, J.W. and Klein, C. eds., The Proterozoic Biosphere: a multidisciplinary study. Cambridge University Press.
Binns, R.A., 2003. The PACMANUS hydrothermal field, Eastern Manus Basin, Papua New Guinea: a decade of seafloor investigation and the first deep drilling of an active, felsic-hosted, submarine hydrothermal field, in Yeats, C.J. ed. Seabed hydrothermal systems of the western Pacific: current research and new directions, June 2003, CSIRO Division of Exploration and Mining Report 1112F, Sydney.
Bischoff, J.L., 1972. A ferroan nontronite from the Red Sea geothermal system. Clays and Clay Minerals, 20: 217-223.
Bischoff, J. and Dickson, F.W., 1975. Seawater-basalt interaction at 200OC and 500 bars: implications as to the origin of seafloor heavy metal deposits and regulation of seawater chemistry. Earth and Planetary Science Letters, 25: 385-397.
Boström, K., Peterson, M.N.A., Joensuu, O. and Fisher, D.E., 1969. Aluminum-poor ferromanganoan sediments on active oceanic ridges. Journal of Geophysical Research, 74: 3261-3270.
Bouma, A.H., 1962. Sedimentology of some Flysch Deposits. Elsevier Publishing Company, Amsterdam, 168p.
Bouma, A.H., 2000. Fine-grained mud-rich turbidite systems; model and comparison with coarse-grained sand-rich systems: in Bouma, A. H. and Stone, C. G eds. Fine-grained turbidite systems: American Association of Petroleum Geologists Memoir 72, p. 9-19.
Braterman, P.S. and Cairns-Smith, A.G., 1987. Iron photoprecipitation and genesis of the banded iron-formations: in Appel, P. W. U., and LaBerge, G. L., eds., Precambrian Iron-Formations: Theophrastus, Athens, p. 215-245.
Brinkman, R.T., 1969. Dissociation of water vapor and evolution of oxygen in the terrestrial atmosphere: Journal of Geophysical Research, 74: 5355-5368.
Brocks, J.J., Buick, R, Summons, R.E. and Logan, G.A., 2003. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia: Geochimica et Cosmochimica Acta, 67: 4321-4355.
Button, A., 1976. Transvaal and Hamersley basins- Review of basin development and mineral deposits; Minerals Science and Engineering, 8: 262-293.
Butuzova, G.Y., 1966. Iron-ore sediments of the fumarole field of the Santorrini volcano, their compositions and origin: Doklady Academi Science, U.S.S.R. Earth Science Sections 168, 215–217.
Butuzova, G.Y., 1969. Recent volcano-sedimentary iron-ore process in the Santorini volcano caldera (Aegean Sea) and its effect on the geochemistry of sediments: Geological Institute Transactions, Academy Science, U.S.S.R. 194, 215–217.
Butuzova, G.Y., Drits, V.A., Morozov, A.A., Gorschkov, A.I., 1990. Processes of formation of iron–manganese hydroxyoxides in the Atlantis-II and Thetis Deeps of the Red Sea. Sediment-hosted Mineral Deposits. Special Publication of the International Association for Sedimentology, vol. 11, pp. 57–72.
Caldeira, CL; Ciminelli, VST; Osseo-Asare, K., 2010. The role of carbonate ions in pyrite oxidation in aqueous systems. Geochimica et Cosmochimica Acta, 74 (6): 1777-1789.
Caldwell, O.G. and Marshall, C.E., 1942. A study of some chemical and physical properties of the clay minerals nontronite, attapulgite and saponite. Missouri University College Agricultural Research Bulletin No 354.
Chukhrov, F.V., 1973. On the genesis problem of thermal sedimentary iron ore deposits: Mineralium Deposita, 8: 138-147.
Cloud, P., 1973. Paleoecological significance of the banded iron formation: Economic Geology, 68: 1135-1143.
Cloud, P., 1983. Banded iron-formation - a gradualist's dilemma: in Trendall, A. F., and Morris, R. C., eds., Banded Iron-formation: Facts and Problems: Amsterdam, Elsevier, p. 401-416.
Czaja, AD; Johnson, CM; Beard, BL; Roden, EE; Li, WQ; Moorbath, S. 2013. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth and Planetary Science Letters, 363: 192-203.
Degens, E.T. and Stoffers, P., 1976. Stratified waters as a key to the past: Nature, 263: 22-27.
Dehant, V., Breuer, D., Claeys, P., Debaille., V., De Kayser, J., Javaux, E., Goderis, S., Karatekin, O., Spohn, T., Vandaele, A.C., Vanhaecke, F., Van Hoolst, T., Wlilquet, V. 2012. From meteorites to evolution and habitability of planets. Planetary and Space Science. 72: 3-17.
Derry, L.A. and Jacobsen, S.B., 1990. The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations: Geochimica et Cosmochimica Acta, 54: 2965-2977.
Drever, J.I., 1974. Geochemical model for the origin of Precambrian banded iron formations: Geological Society of America Bulletin, 35: 1099-1106.
Drever, J.I., 1982. The geochemistry of natural waters, Prentice-Hall, Inc., pp.388.
Dunlop, J.S.R., Buick, R. 1981. Archaean epiclastic sediments derived from mafic volcanics, North Pole, Pilbara Block, Western Australia. In Glover, J.E., Groves, D.I. eds. Archaean Geology: Second International Symposium, Perth, 1980. Special Publication of the Geological Society of Australia, 7: 225-234.
Edmond, J.M., Measures, C., Mangum, B., Grant, B., Sclater, F.R., Collier, R., Hudson, A., Gordon, L.I. and Corliss, J.B., 1979. On the formation of metal-rich deposits at Ridge crests: Earth and planetary Science Letters, 46:19-30.
Edwards, CT; Pufahl, PK; Hiatt, EE; Kyser, TK., 2012. Paleoenvironmental and taphonomic controls on the occurrence of Paleoproterozoic microbial communities in the 1.88 Ga Ferriman Group, Labrador Trough, Canada. Precambrian Research, 212: 91-106.
Eigenbrode, J.L., Freeman, K.H. and Summons, RE. Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth and Planetary Science Letters, 273, 323-331.
England, G.L., Rasmussen, B., Krapez, B. and Groves, D.I., 2002. Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology. 49: 1133-1156.
Erikson, P.G. 1999. Sea level changes and the continental freeboard concept: general principles and application to the Precambrian. Precambrian Research. 97 (3–4), 143–154.
Ewers, W.E., 1983. Chemical factors in the deposition and diagenesis of banded iron-formation: in Trendall, A. F. and Morris, R. C., eds., Banded Iron-formation: Facts and Problems, Elseviers Science Publishers. p. 491-512.
Ewers, W.E. and Morris, R.C., 1981. Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia: Economic Geology, 76: 1929-1953.
Fortin, D. and Langley, S., 2005. Formation and occurrence of biogenic iron-rich minerals: Earth-Science Reviews, 72: 1-19.
Fralick, P., 1987. Depositional environment of Archean iron-formation: inferences from layering in sediment and volcanic hosted end members. In: Appel, P.W.U., LaBerge, G.L. (Eds.), Precambrian Iron-formations. Theophrastus, Athens, pp. 251–266.
Frimmel, H.E., 2005. Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa: Earth-Science Reviews, 70: 1-46.
Fryer, B.J., 1977. Rare earth evidence in iron formation for changing Precambrian oxidation states. Geochimica et Cosmochimica Acta, 41: 361-367.
Garrels, R.M., 1987. A model for the deposition of the microbanded Precambrian iron formations: American Journal of Science, 287: 81-106.
Garrels, R.M., Perry Jr., E. A. and Mackenzie, F. T., 1973. Genesis of Precambrian Iron-formations and the development of atmospheric oxygen: Economic Geology, 68: 1173-1179.
Goode, A.D.T., Hall, W.D.M. and Bunting, J.A., 1983. The Nabberu Basin of Western Australia: in Trendall, A. F. and Morris, R. C., eds., Banded Iron-formations: Facts and Problems: Amsterdam, Elsevier, p. 295-323.
Gole, M.J., 1979. Metamorphosed banded iron-formations in the Archaean Yilgarn Block, Western Australia: Unpublished PhD thesis, University of Western Australia. 255p.
Gole, M.J., 1981. Archean banded iron-formations, Yilgarn Block, Western Australia: Economic Geology, 76: 1954-1974.
Graf, J.L., 1978. Rare earth elements, iron formations and seawater: Geochimica et Cosmochimica Acta, 42: 1845-1850.
Grandstaff, D.E., 1980. Origin of uraniferous conglomerates at Elliot Lake, Canada, and Witwatersrand, South Africa: Implications for oxygen in the Precambrian Atmosphere: Precambrian Research, 13: 1-26.
Gross, G.A., 1965. Geology of iron deposits in Canada, Vol. 1. General geology and evaluation of iron deposits: Canadian Geological Survey, Economic Geology Report.
Gross, G.A. 1983. Tectonic systems and the deposition of iron-formation: Precambrian Research, 20: 171-187.
Gross, G.A., 1991. Genetic concepts for iron formation and associated metalliferous sediments: Economic Geology Monograph No 8, p. 51-81.
Hall, W.D.M. and Goode, A.D.T., 1978. The early Proterozoic Nabberu basin and associated iron formations of Western Australia: Precambrian Research, 7: 129-184.
Hampton, M.A., 1972. The role of subaqueous debris flows in generating turbidity currents: Journal of Sedimentary Petrology, 42: 775-793.
Hartman, H., 1984. The evolution of photosynthesis and microbial mats: a speculation on the banded iron formations: in Cohen, Y., Castenhole, R.W. and Halverson, H.O., eds. Microbial Mats: Stromatolites, Alan R. Liss, Inc., New York, p. 449-453.
Hesse, R. and Chough, S.K., 1980. The northwest Atlantic mid-oceanic channel of the Labrador Sea: 11. Deposition of parallel laminated levee-muds from the viscous sublayer of low-density turbidity currents: Sedimentology, 27: 697-711.
Hiemenz, P.C., 1997. Principles of colloid and surface chemistry, 3rd Edition, Marcel Dekker, New York, 650 p.
Heinen, W. and Oehler, J.H. 1979. Evolutionary aspects of biological involvement in the cycling of silica: in: P.A. Trudinger and D.J. Swaine, eds., Biochemical cycling of mineral-forming elements. Elsevier, Amsterdam, p. 431-465.
Hoffman, P.F., Kaufman, A.J., Halverson, G.P. and Schrag, D.P., 1998. A Neoproterozoic snowball Earth: Science, 281: 1342-1346.
Holland, H.D., 1973. The Oceans: A possible source of iron in iron-formations: Economic Geology, 68: 1169-1172.
Holland, H.D., 1984. The Chemical Evolution of the Atmosphere and Oceans: Princeton University Press, Princeton, New Jersey, 582p.
Holland, H.D., 2002. Volcanic gases, black smokers and the great oxidation event: Geochimica et Cosmochimica Acta, 66: 3811-3826.
Holland, H.D., 2006. The oxygenation of the atmosphere and oceans: Philosophical Transactions of the Royal Society, B, 361: 903-915.
Honnorez, J., Von Herzen, R.P., Barrett, T.J., Becker, K., Bender, M.L., Borella, P.E., Hubberten, H-W., Jones, S.C., Karato, S., Laverne, C., Levi, S., Migdisov, A.A., Moorby, S.A., and Schrader, E.L., 1981. Hydrothermal mounds and young ocean crust of the Galapagos: Preliminary Deep Sea Drilling results, Leg 70: Geological Society of America Bulletin 92: 457-472.
Huston, D.L. and Logan, G.A., 2004. Barite, BIFs and bugs: evidence for the evolution of the Earth's early hydrosphere: Earth and Planetary Science Letters, 220: 41-55.
Hyde, R.S. 1980. Sedimentary facies in the Archean Timiskaming Group and their tectonic implications, Abititbi Greenstone Belt, Northeastern Ontario, Canada: Precambrian Research, 12: 161-195.
Iler, R.K., 1979. Chemistry of silica – solubility, polymerization, colloid and surface properties and biochemistry. John Wiley & sons. pp. 1026.
Isley, A.E., 1995. Hydrothermal plumes and the delivery of iron to banded iron formation: Journal of Geology, 103: 169-185.
Isley, A.E. and Abbott, D.H., 1999. Plume-related mafic volcanism and the deposition of iron-formation: Journal of Geophysical Research, 104 (B7) 15,461-15,477.
James, H.L., 1954. Sedimentary facies of iron formation: Economic Geology, 49: 235-293.
James, H.L., 1966. Chemistry of the iron-rich sedimentary rocks. United States Geological Survey Professional Paper, No 440-W, 60pp.
James, H.L., 1983. Distribution of banded iron-formation in space and time: in Trendall, A. F. and Morris, R. C., eds., Banded Iron -Formation: Facts and Problems, Elsevier, Amsterdam, p. 471-490.
James, H.L., 1992. Precambrian iron-formations: Nature, origin, and metamorphic evolution from sedimentation to metamorphism: in Wolf, K. H., and Chilingarian, G. V., eds., Developments in Sedimentology 47, Diagenesis 111: Elsevier Science Publishers, Amsterdam, p. 543-589.
Kappler, A., Pasquero, C., Konhauser, K.O. and Newman, D.K., 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe (ll)-oxidizing bacteria: Geology, 33: 865-868.
Karl, D. M., McMurtry, G.M., Malhoff, A. and Garcia, M.O., 1988. Loihi Seamount, Hawaii: A mid-plate volcano with a distinctive hydrothermal system. Nature, 335: 532-535.
Kasting, J.F., 1993. Earth's early atmosphere: Science, 259: 920-926.
Kelley, D.S., Karson, J.A., Blackman, D.K., Fruh-Green, G.L., Butterfield, D.A., Lilley, M.D., Olson, E.J., Schrenk, M.O., Roek, K.K., Lebonk, G.T. and Rivizzigno, P., 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30O8'N: Nature, 412: 145-149.
Kimberley, M.M., 1978. Paleoenvironmental classification of iron formations: Economic Geology, 73: 215-229.
Kimberley, M.M., 1989. Exhalative origin of iron-formations: Ore Geology Reviews, 5: 13-145.
Kimberley, M.M., Tanaka, R.T. and Farr, M.R., 1980. Composition of Middle Precambrian uraniferous conglomerate in the Elliot Lake - Agnew Lake area of Canada: Precambrian Research, 12: 375-392.
Klein, C., 1983, Diagenesis and metamorphism of Precambrian banded iron-formations: in Trendall, A. F. and Morris, R. C., eds., Iron-formations: Facts and Problems: Amsterdam, Elsevier, p. 417-469.
Klein, C. and Beukes, N.J., 1992. Proterozoic iron-formations: in K.C. Conde, ed., Proterozoic Crustal Evolution, Developments in Precambrian Geology 10. Elsevier Science Publishers, Amsterdam, p. 383-418.
Klein, C. and Beukes, N.J., 1993. Sedimentology and geochemistry of the glaciogenic Late Proterozoic Rapitan iron-formation in Canada: Economic Geology, 88: 542-565.
Klein, C. and Ladeira, E.A., 2002. Petrography and geochemistry of the least altered banded iron-formation of the Archean Carajás Formation, Northern Brazil: Economic Geology, 97: 643-651.
Klein, C. and Ladeira, E.A., 2004. Geochemistry and mineralogy of Neoproterozoic banded iron-formations and some selected siliceous manganese formations from the Urucum District, Matto Grosso do Sul, Brazil: Economic Geology, 99: 1233-1244.
Konhauser, K.O., 1998. Diversity of bacterial iron mineralization. Earth Science Reviews, 43: 91-121.
Konhauser, K.O., Hamade, T., Raiswell, R., Morris, R.C., Ferris, F.G., Southam, G. and Canfield, D.E., 2002. Could bacteria have formed the Precambrian banded iron formations? Geology,

30: 1079–1082.
Konhauser, K. O., Newman, D. K. & Kappler, A. 2005. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology

3, 167–177.
Konhauser, K.O., Amskold, L., Lalonde, S.V., Posth, N.R., Kappler, A. and Anbar, A., 2007, Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth and Planetary Science Letters, 258: 87-100.
Krapez, B., Barley, M.E. and Pickard, A.L., 2001. Banded iron-formations: ambient pelagites, hydrothermal muds or metamorphic rocks? 4th International Archaean Symposium, Extended Abstracts, Perth, p. 247-248.
Krapez, B., Barley, M.E. and Pickard, A.L., 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia: Sedimentology, 50 (5) 979-1011.
Krapez, B. and Martin, D. McB., 1999. Sequence stratigraphy of the Palaeoproterozoic Nabberu Province of Western Australia: Australian Journal of Earth Sciences, 46: 89-103.
Krautner, H.G. 1977. Hydrothermal-sedimentary iron ores related to submarine volcanic rises: the Teliuc-Ghelar type as a carbonatic equivalent of the Lahn-Dill type: in; Klem, D.D. and Schneider, H.J., eds., Time- and strata-bound ore deposits, p. 232-253. Springer Verlag, Berlin. 553.1 1977.
Kuhn, T.S., 1962. The structure of scientific revolutions. University of Chicago Press.
Kump, L.R. and Holland, H.D., 1992. Iron in Precambrian rocks: implications for the global oxygen budget of the ancient Earth: Geochimica et Cosmochimica Acta, 56: 3217-3223.
Kump, L.R., Kasting, J.F. and Barley, M.E., 2001. Rise of atmospheric oxygen and the “upside-down” Archaean mantle: Geochemistry, Geophysics, Geosystems, 2: 1025-1035.
Kuo, P.H., Holland, H.D. and Danielson, A., 1993. Late Archean atmospheric CO2: Annual Meeting of Geological Society of America, Boston, 1993, p. A89.
La Berge, G.L., 1966. Altered pyroclastic rocks in iron formation in the Hamersley Range. Western Australia: Economic Geology, 61: 147-161.
La Berge, G.L., 1973. Possible biological origin of Precambrian iron-formations: Economic Geology, 68: 1098-1109.
Lascelles, D.F., 1983. Inliers of banded iron-formation in the Proterozoic Wyloo Group sediments near Paraburdoo, Western Australia: Journal of the Geological Society of Australia, 30: 161-165.
Lascelles, D.F., 2000. Marra Mamba Iron Formation stratigraphy in the eastern Chichester Range, Western Australia: Australian Journal of Earth Science, 47: 799-806.
Lascelles, D.F., 2001. The Ferro Gully North Mine, Hamersley Province, Western Australia: Australasian Institute of Mining and Metallurgy Proceedings, 306: 47-52.
Lascelles, D.F., 2002. A new look at old rocks: a non-supergene origin for BIF-derived in situ high-grade iron ore deposits: Iron Ore 2002, Proceedings, Australasian Institute of Mining and Metallurgy, Perth, 2002. p. 107-126.
Lascelles, D.F., 2006a. The genesis of the Hope Downs iron ore deposit, Hamersley Province, Western Australia: Economic Geology, 101: 1359-1376.
Lascelles, D.F., 2006b. The Mt Gibson banded iron-formation hosted magnetite deposit: two distinct processes for the origin of enriched iron ore deposits: Economic Geology, 101: 651-666.
Lascelles, D.F., 2007a. Genesis of the Koolyanobbing iron ore deposits, Yilgarn Province, Western Australia: Applied Earth Science, Transactions of the Institute for Mining and Metallurgy B: 116: 86-93.
Lascelles, D.F., 2007b. Black smokers and the Archean environment: a uniformitarian model for the genesis of iron-formations: Ore Geology Reviews. 32: 381-411.
Lascelles, D.F. 2013. Plate tectonics caused the demise of banded iron formations. Applied Earth Science. 122: 230-241.
Lascelles, D.F. 2014. Paleoproterozoic regolith and wave cut platforms preserved on the northern margin of the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences. 61: 843-863.
Lascelles, D.F. and Tsiokos, D.S. 2014.

Microplaty hematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits. Ore Geology Reviews, 66: 309-333.


Levell, B.K., 1980. Evidence for currents associated with waves in Late Precambrian shelf deposits from Finnmark, North Norway. Sedimentology 27, 153–166.
Lepp, H. and Goldich, S.S., 1964. Origin of Precambrian iron-formations: Economic Geology, 59: 1025-1060.
Li, YL; Konhauser, KO; Cole, DR; Phelps, TJ., 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology 39 (8): 707-710.
Li, YL; Konhauser, KO; Kappler, A; Hao, XL. 2013. Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations. Earth and Planetary Science Letters, 361 229-237.
Lonsdale, P., 1976. Abyssal circulation of the south-east Pacific and some geological interpretations: Journal of Geophysical Research, 81: 1163-1176.
Loughnan, F.C., 1969. Chemical Weathering of the Silicate Minerals: New York, American Elsevier Publishing Co. Inc., 154 p.
Lupton, J.E., 1996. A far-field hydrothermal plume from Loihi Seamount: Science, 272: 976-979.
Maliva, R.G., Knoll, A.H. and Simonson, B.H., 2005. Secular change in the Precambrian silica cycle: Insights from chert petrology: Geological Society of America Bulletin, 117: 835-845.
Marshall, C.E., 1949. The colloid chemistry of the silicate minerals: Academic Press, New York, 195p.
Mason, B., 1966. Principles of Geochemistry: John Wiley and sons, Inc. New York, 329p.
Maynard, J.B. 1983. Geochemistry of Sedimentary Ore Deposits. Springer Verlag, New York, 305p.
McCall, G.J.H., 2010. New paradigm for the early Earth: did plate tectonics as we know it not operate until the end of the Archaean? Aust Jour Earth Sci. 57: 349-355.
McConchie, D., 1987. The geology and geochemistry of the Joffre and Whaleback Shale Members of the Brockman Iron Formation, Western Australia: in Appel, P.W.U. and La Berge, G.L., eds., Precambrian Iron- Formations: Athens, Theophrastus Publications, S.A., p. 541-597.
McGuire, A.V., Dyar, M.D. and Ward, K.A., 1989. Neglected Fe 3+/ Fe2+ ratios - A study of Fe3+ content of megacrysts from alkali basalts: Geology, 17: 687-690.
Moore, E.S. and Maynard, J.E., 1929. Solution, transportation and precipitation of iron and silica: Economic Geology, 24: 272-303, 365-402, 506-527.
Moore, W.B., and Webb, A.G. 2013. Heat-pipe Earth. Nature. 501: 501-505.
Morris, R.C., 1972. A pilot study of phosphorous distribution in parts of the Brockman Iron Formation, Hamersley Group, Western Australia: Geological Survey of Western Australia, Annual Report for 1972, Perth Western Australia, p. 75-81.
Morris, R.C., 1983. Supergene alteration of banded iron formation: in Trendall, A. F., and Morris, R.C., eds., Iron formation: Facts and Problems: Elsevier Science Publications, Amsterdam, p. 513-534.
Morris, R.C. 1988. The goethitic channel ores of the Hamersley Province; a pilot study of the “Robe Pisolite.” CSIRO, Division of Exploration Geoscience, Restricted Report No. MG 70R, Perth.
Morris, R.C., 1993. Genetic modeling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia: in Blake, T. S., & Meakins, A., Archean and early Proterozoic geology of the Pilbara Region, Western Australia: Precambrian Research, 60: 243-286.
Morris, R.C. and Horwitz, R.C., 1983. The origin of the iron-formation-rich Hamersley Group of Western Australia - deposition on a platform: Precambrian Research, 21: 273-297.
Miyano, T. and Beukes, N. J., 1984. Phase relations of stilpnomelane, ferri-annite and riebeckite in very low-grade metamorphosed iron-formations: Transactions of the Geological Society of South Africa, 87: 111-124.
Müller, G. and Förstner, U., 1973. Recent iron ore formation in Lake Malawi, Africa: Mineralium Deposita, 8: 278-290.
Ohmoto, H., 1993. The banded iron-formations in the Hamersley Basin: products of the oxygen-rich Archean atmosphere? Annual Meeting of the Geological Society of America, Boston, 1993, Abstracts with Program, p. A89.
Ohmoto, H., 2003a. Banded iron-formations and the evolution of the atmosphere, hydrosphere, biosphere, and lithosphere. Applied earth science, Transcripts of the Institution of Mining and Metallurgy, Section B. 112: B161-162.
Okamoto, G., Okura, T. and Goto, K. 1957. Properties of silica in water: Geochimica et Cosmochimica Acta, 12: 123-132.
O'Rourke, J.E., 1961. Paleozoic banded iron-formations: Economic Geology, 56: 331-361.
Paolo, C., Wiele, S.M. and Reinhart, M.A., 1989. Upper regime parallel lamination as the result of turbulent sediment transport and low- amplitude bed forms: Sedimentology, 36: 47-59.
Parr, J., Yeats, C. and Binns, R., 2003. Petrology, trace element geochemistry and isotope geochemistry of sulfides and oxides from the PACMANUS hydrothermal field, Eastern Manus Basin, Papua New Guinea: in C.J. Yeats, ed. Seabed hydrothermal systems of the Western Pacific, CSIRO Exploration and Mining Report 1112F, North Ryde, Australia, p. 53-57.
Pickard, A.L., Barley, M.E. and Krapez, B., 2004. Deep-marine depositional setting of banded iron formation: sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia: Sedimentary Geology, 170: 37-62.
Planavsky, N; Rouxel, O; Bekker, A; Shapiro, R; Fralick, P; Knudsen, A. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters, 286 (1-2): 230-242.
Polat, A. and Frei, R., 2005. The origin of early Archean banded iron formations and of continental crust, Isua, southern West Greenland: Precambrian Research, 138: 151-175.
Pufahl, P.K. and Fralick, P.W., 2004. Depositional controls on Palaeoproterozoic iron formation accumulation, Gogebic Range, Lake Superior region, USA: Sedimentology, 51: 791-808.
Quade, H., 1970. Der Bildungraum und die genetische Problematik der vulkanosedimentären Eisenerze: Clausthaler Hefte 9, p. 27-65.
Quade, H., 1976. Genetic problems and environmental features of volcano-sedimentary iron-ore deposits of the Lahn-Dill type: in Wolf, K. H., ed., Handbook of Strata-Bound and Stratiform Ore Deposits, Amsterdam, Elsevier, 7: 255-294. 553.1 1976.
Rasmussen, B. and Buick, R., 1999. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250 - 2750 Ma sandstones from the Pilbara Craton, Australia: Geology, 27: 115-118.
Rogers, J.J.W., Santosh, M., 2003. Supercontinents in Earth history. Gondwana Research. 6:357-368.
Roscoe, S.M., 1968. Huronian rocks and uraniferous conglomerates in the Canadian Shield: Geological Survey of Canada Paper, 68 - 40, 205pp.
Rundquist, D.V. and Sobolev, P.O., 2002. Seismicity of mid-oceanic ridges and its geodynamic implications: a review: Earth-Science Reviews, 58: 143-161.
Rye, R. and Holland, H.D., 1998. Palaeosols and the evolution of atmospheric oxygen: A critical review: American Journal of Science, 298: 621-672.
Seyfried, W.E. and Janecky, D.R., 1985. Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: Influence of fluid pressure and basalt composition and crystallinity. Geochimica et Cosmochimica Acta, 49: 2545-2560.
Shegelsky, R.J., 1987. The depositional environment of Archean iron formations, Sturgeon-Savant greenstone belt, Ontario, Canada: in P.W.U. Appel and G.L. LaBerge, eds., Precambrian Iron-formations, Theophrastus Publications, S.A. Athens, p. 329-344.
Siehl, V.A. and Thein, J., 1989. Minette type ironstones: in T.P. Young & W.E.G. Taylor (editors) Phanerozoic ironstones. The Geological Society, London, Special Publication No. 46. p. 175-193.
Simonson, B.M., 1985. Sedimentological constraints on the origin of Precambrian iron-formations: Geological Society of America Bulletin, 96: 244-252.
Simonson, B.M. and Lanier, W.P., 1987. Early silica cementation and microfossil preservation in iron-formation stromatolites, early Proterozoic of Canada: in P.W.U. Appel and G.L. LaBerge, eds., Precambrian Iron-formations, Theophrastus Publications, S.A. Athens, p. 187-214.
Spears, D.A., 1989. Aspects of iron incorporation into sediments with special reference to the Yorkshire Ironstones: in: T.P. Young & W.E.G. Taylor (editors) Phanerozoic ironstones. The Geological Society, London, Special Publication No. 46. p. 19-30.
Stanton, R.L., 1972. A preliminary account of chemical relationships between sulphide lode and ‘banded iron formation’ at Broken Hill, New South Wales. Economic Geology. 67: 1128-1145.
Stanton, R.L., 1976. Petrochemical studies of the ore environment at Broken Hill, New South Wales: 1- constitution of ‘banded iron formation’. Transactions of the Institute for Mining and Metallurgy. 85: B33 – B46.
Tamura, T. and Masuda, F., 2005. Bed thickness characteristics of inner shelf storm deposits associated with a transgressive to regressive Holocene wave-dominated shelf, Sendai coastal plain, Japan. Sedimentology, 52: 1375-1396.
Towe, K.M. 1983. Precambrian atmospheric oxygen and banded iron formations: a delayed ocean model; Precambrian Research, 20: 161-170.
Trendall, A.F., 1965. Progress report on the Brockman Iron Formation in the Wittenoom -Yampire area: Western Australia Geological Survey Annual Report for 1964.p. 55-65.
Trendall, A.F., 1973a. Precambrian iron-formations of Australia. Economic Geology, 68: 1023-1034.
Trendall, A.F., 1973b. Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia. Economic Geology, 68: 1089-1097.
Trendall, A.F., 1983. The Hamersley Basin: in Trendall, A. F., and Morris, R.C., eds., Iron formation: Facts and Problems: Elsevier Science Publications, Amsterdam, p. 69-129.
Trendall, A.F. and Blockley, J.G., 1970. The iron formations of the Precambrian Hamersley Group, Western Australia, with special reference to the associated crocidolite: Bulletin 119, Geological Survey of Western Australia, Perth. 353p.
Tyler, I.M. and Thorne, A.M., 1990. The northern margin of the Capricorn orogeny, Western Australia – an example of an early Proterozoic collision zone: Journal of Structural Geology, 12: 685-701.
Van Hise, C.R. and Leith, C. K., 1911, The Geology of the Lake Superior Region: United States Geological Survey Monograph, 52. 641p.
Veizer, J., Jansen, S.L., 1979. Basement and sedimentary recycling and continental evolution. Journal of Geology, 87, 341–370.
Von Damm, K.L., 1990. Seafloor hydrothermal activity: black smoker chemistry and chimneys: Annual Review of Earth and Planetary Science, 18: 173-204.
Van Kranendonk, M.J. and Ivanic, T.J., 2008. A new lithostratigraphic scheme for the northeastern Murchison Domain, Yilgarn Craton. Geological Survey of Western Australia, Annual Review 2007-08 35-53.
Van Kranendonk, M.J., Ivanic, T.J., Wingate, M.T.D., Kirkland, C.L., Wyche, S., 2013. Long-lived, autochthonous development of the Archean Murchison Domain, and implications for Yilgarn Craton tectonics. Precambrian Research, 229: 49-92.
Walter, M.R. and Hofmann, H.J., 1983. The palaeontology and palaeoecology of Precambrian iron-formations: in A.F. Trendall and R.C. Morris (eds), Iron-Formation: Facts and Problems. Elsevier, Developments in Precambrian Geology, 6: 373-400.
Wilkinson, B.H., McElroy, B.J., Kesler, S.E. Peters, S.E. and Rothman, E.D., 2009. Global geologic maps are tectonic speedometers—Rates of rock cycling from area-age frequencies. GSA Bulletin; 121; 760–779.
Yamamoto, S., 1988. Ferromagnesian and metalliferous pelagic clay minerals in oceanic sediments: in Chilingarian, G. V., & Wolf, K. H., eds., Developments in Sedimentology 43. Diagenesis,11 Elsevier, Amsterdam, p. 115-146.
Yang, W., Holland, H.D. and Rye, R., 2002. Evidence for low or no oxygen in the late Archaean atmosphere from the ~2.76Ga Mt Roe #2 paleosol, Western Australia: Geochimica et Cosmochimica Acta, 66: 3707-3718.
Yariv, S. and Cross, H., 1979. Geochemistry of colloid systems: Springer-Verlag, New York, 450p.
Yeats, C.J., 2003. Mineralogy and geochemistry of alteration at the PACMANUS hydrothermal field, Eastern Manus Basin, Papua New Guinea: Vertical and lateral variation at low and high-temperature vent sites: in C.J. Yeats, ed. Seabed hydrothermal systems of the Western Pacific, CSIRO Exploration and Mining Report 1112F, North Ryde, Australia, p. 53-57.
Young, T.P., 1989. Eustatically controlled ooidal ironstone deposition: in Young, T.P., Taylor, W.E. (Eds.), Phanerozoic Ironstones. Geological Society Special Publication 46: 51-63.

Chapter 4

Anand, R.R., Churchward, H.M. and Smith, R.E., 1991. Regolith-landform development and siting and bonding of elements in regolith units, Mt Gibson district, Western Australia

: CSIRO, Restricted Report 165R, Division of Exploration Geoscience, Perth.
Anand, R.R., Paine, M.D. and Smith, R.E. 2002.
Genesis, classification and atlas of ferruginous materials, Yilgarn Craton.

CRC LEME open file report 73, CSIRO Exploration and Mining, Perth, 91p.
Angerer T. and Hagemann, S.G., 2010. The BIF-hosted high-grade iron ore deposits in the Archean Koolyanobbing Greenstone Belt, Western Australia: Structural control on synorogenic- and weathering-related magnetite-, hematite- and goethite-rich iron ore.
Economic Geology

, 105: 917-945.
Barley, M.E., Pickard, A.L., Hagemann, S.G. and Folkert, S.L., 1999. Hydrothermal origin for the 2 billion year old Mount Tom Price giant ore deposit, Hamersley Province, Western Australia:
Mineralium Deposita,

34. 784-789.
Berge, J.W., Johansson, K. and Jack, J., 1977. Geology and origin of the hematite ores of the Nimba Range, Liberia:
Economic Geology

, v. 72, p. 582-607.
Beukes, N.J., Gutzmer, J. and Mukhopadhyay, J. 2003. The geology and genesis of high-grade hematite iron ore deposits:
Transactions of the Institute of Mining and Metallurgy,

112. B18-25.
Belevtsev, Y.N., Belevtsev, R.Y. and Siroshtan, R.I., 1983. The Krivoy Rog Basin: in Trendall, A. F., and Morris, R.C., eds.,
Iron formation: Facts and Problems:

Elsevier, Developments in Precambrian Geology, No. 6, p. 211-251.
Blockley J. G. 1990. Iron ore. In:
Geology and Mineral Resources of Western Australia

, p. 679–692. Geological Survey of Western Australia, Perth.
Brimhall, G.H. and Lewis, C.J., 1992. Bauxite and laterite soil ores:
Encyclopedia of Earth System Science,

Academic Press, Inc. 1: 321-336.
Bodycoat, F., 2007 Stratigraphic and Structural Setting of Iron Mineralisation at E Deposit (East), Area C, Hamersley Province, Western Australia,
Proceedings of Iron Ore 2007 Conference

, 20-22 August 2007, Perth Western Australia: Special AusIMM Publication Series No. 6/2007, p. 51-56.
Bourn, R., and Jackson, D.G., 1979. A generalized account of the Paraburdoo iron ore bodies:
Australasian Institute of Mining and Metallurgy, Conference, 1979

, p. 187-201.
Brown, M.C. and Oliver, N. H.S. 2002. Veining and fluid flow in the area surrounding the Mt Whaleback microplaty hematite ore deposit - constraints on fluid dynamics before, during and after ore genesis: in
Proceedings of Iron Ore 2002

, Australasian Institute for Mining and Metallurgy, Perth, p. 77-79.
Brown, M.C., Oliver, N.H.S. and Dickens, G.R., 2004. Veins and hydrothermal fluid flow in the Mt Whaleback Iron Ore District, eastern Hamersley Province, Western Australia:
Precambrian Research

, v. 128, p. 441-474.
Butt C. R. M. 1982. History and characteristics of weathering in Australia. In: Smith R. E. ed.
Geochemical exploration in deeply weathered terrain

. CSIRO Institute of Energy and Earth Resources, Division of Mineralogy, Perth, Western Australia. pp. 9–18.
Butt, A. L., Hawke, P.J. and Flis, M.F. 2002. Of detritals, derivatives and determination- an example of detrital iron discovery: in
Proceedings Iron Ore 2002,

Australasian Institute for Mining and Metallurgy, Perth. p. 67-70.
Cabral, A.R., Filho, R. and Jones, R.D., 2003. Hydrothermal origin of soft hematite ore in the Quadrilátero Ferrífero of Minas Gerais, Brazil: petrographic evidence from the Gongo Soco iron ore deposit:
Transactions of the Institution of Mining and Metallurgy, Section B, Applied earth science

, 112: B279-B285.
Chown, E.H, N'Dah, E. and Mueller, W.U., 2000. The relation between iron-formation and low temperature hydrothermal alteration in an Archean volcanic environment:
Precambrian Research,

101: 263-275.
Corry C. E., Demoully G. T. and Gerety M. T. 1983.
Field procedure manual for self-potential surveys

. Zonge Engineering and Research Organization. Tucson, Arizona. 63 p.
Clout, J.M.F., 2005, Iron formation-hosted iron ores in the Hamersley Province of Western Australia, in
Proceedings Iron Ore 2005

, Perth, Western Australia: No. 8/2005, p. 9-19.
Clout, J.M.F. and Rowley, W.G., 2009. The Fortescue metals story – From exploration to the third largest iron ore producer in Australia. In
Proceedings Iron Ore 2009

, Perth, Western Australia. Australasian Institute of Mining and Metallurgy Publication Series, No.7/2009. p. 3-10.
Clout, J.M.F., and Simonson, B.M., 2005, Precambrian iron formations and iron formation-hosted iron ore deposits,
in

, Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., Economic Geology One Hundredth Anniversary Volume 1905-2005

, Society of Economic Geology, p. 643-679.
Dalstra, H.; Harding, T., Riggs, T. and Taylor, D., 2002. Banded iron-formation hosted high-grade hematite deposits, a coherent group?
Proceedings Iron Ore 2002

, Australasian Institute for Mining and Metallurgy, Perth. p.57-62.
Dalstra, H.J., 2005. Structural controls of bedded iron ore in the Hamersley Province, Western Australia – an example from the Paraburdoo Ranges:
Iron Ore 2005 Proceedings

, Australasian Institute of Mining and Mineralogy, Publication No 8/2005, p. 49-55.
Dalstra, H. and Guedes, S., 2004. Giant hydrothermal hematite deposits with Mg-Fe metasomatism: a comparison of the Carajas, Hamersley, and other iron ores:
Economic Geology

, 99: 1793-1800.
Davis, S.N., 1964. Silica in streams and groundwater:
American Journal of Science

, 262: 870-871.
De Vitry, C., 2002. Resource classification – A case study from the Joffre- hosted iron of BHP Billiton’s Mt Whaleback operations.
Proceedings Iron Ore 2002

, Australasian Institute for Mining and Metallurgy, Perth. p.127-136.
Dorr, J.v.N., 1964. Supergene iron ores of the Minas Gerais, Brazil:
Economic Geology

, 59: 1203-1240.
Dorr, J.v.N. and Barbosa, A.L.M., 1963.
Geology and ore deposits of the Itabira district, Minas Gerais, Brazil

: U.S. Geological Survey, Professional Paper 341C, pp. 110.
Dosseto, A., Bourdon, B., Gaillardet, J., Allègre, C.J. and Filizola, N., 2006. Time scale and conditions of weathering under tropical climate: Study of the Amazon basin with U-series.
Geochimica et Cosmochimica Acta.

70: 71-89.
Dukino, R.D., England, B.M. and Kneeshaw, M. 2000. Phosphorous distribution in BIF-derived iron ores of Hamersley Province, Western Australia:
Transcripts of the Institution of Mining and Metallurgy (Section B, Applied earth science

) 109: B168-B176.
Fairbridge, R.W. 2008. Duricrusts and induration. In

W. Chesworth, ed. Encyclopedia of soil science.

Springer, The Netherlands, p. 192-197.
Fernandes de Lima, T.A., Rios, F.J., Rosiére, C.A., Meireles, H.P. and Yardley, B.W.D. 2009. Fe-ore forming fluids in the Espinhaç0 Supergroup, Minas Gerais, Brazil.
Proceedings of the 19th Biennial SGA Meeting

, Townsville. 2: 564-566.
Findlay, D., 1994. Diagenetic boudinage, an analogue model for the control on hematite enrichment iron ores of the Hamersley Iron Province of Western Australia, and a comparison with Krivoi Rog of Ukraine, and Australia:
Second International Archaean Symposium

, Archaean Geochemistry Project, Perth, p. 64-65.
Griffin, A.C., 1980. Structural geology and sites of iron ore deposition in Koolyanobbing Range, Western Nimba Range, Liberia:
Ore Geology Reviews

, 9: 311-324.
Hannon, E., Kepert, D.A. and Clark, D. 2005. From target generation to two billion tonnes in 18 months - the re-invention of the Chichester Range:
Iron Ore Conference 2005

, The Australasian Institute of Mining and Metallurgy Publication Series No 8/2005, p. 73-77.
Harmsworth, R.A., Kneeshaw, M., Morris, R.C., Robinson, C.J. and Shrivastava, P.K., 1990. BIF-derived ores of the Hamersley Province: in Hughes, F., ed.,
Geology of the Mineral deposits of Australia and Papua New Guinea

, Vol. 1., Monograph 14, Australasian Institute of Mining and Metallurgy, p. 617-642.
Hippertt, J., Lana, C. and Takeshita, T., 2001. Deformation partitioning during folding of banded iron formation: J
ournal of Structural Geology.

23: 819-834.
Hodkiewicz, P., Guibal, D. and Arvidson, H. 2005. Structural controls on iron mineralization and resource domains in C Deposit, Area C, Hamersley Province, Australia: in
Proceedings Iron Ore 2005

, Australasian Institute of Mining and Metallurgy Special Publication Series No. 8/2005, p. 79-83.
Iler, R.K., 1979.
Chemistry of silica – solubility, polymerization, colloid and surface properties and biochemistry

. John Wiley & sons. pp. 1026.
Jackson, M.L. and Sherman, G.D., 1953. Chemical weathering of minerals in soils.
Advanced Agronomics.

5: 219-318.
Kilty K. T. 1984. On the origin and interpretation of self potential anomalies.
Geophysical Prospecting

32, 51–62.
Klein, C. and Ladeira, E.A., 2002. Petrography and geochemistry of the least altered banded iron-formation of the Archean Carajás Formation, Northern Brazil:
Economic Geology

, 97: 643-651.
Kneeshaw, M., 1975. Mount Whaleback iron ore body: in C.L. Knight, ed.,
Economic Geology of Australia and Papua New Guinea,

Australasian Institute of Mining and Metallurgy, Monograph 5, Vol. 1, Metals, p. 910-916.
Kneeshaw, M, 1984. Pilbara iron ore classification - a proposal for a common classification for BIF derived supergene iron ore,
Proceedings Australasian Institute of Mining and Metallurgy

, No. 289, p. 157-162.
Lascelles, D F, 1978. Report on Wyloo basal conglomerate at Paraburdoo, Hamersley Iron P/L, unpublished company report.
Lascelles, D.F., 2000. Marra Mamba Iron Formation stratigraphy in the eastern Chichester Range, Western Australia:
Australian Journal of Earth Science

, 47: 799-806.
Lascelles, D.F., 2001. The Ferro Gully North Mine, Hamersley Province, Western Australia:
Australasian Institute of Mining and Metallurgy Proceedings

, 306: 47-52.
Lascelles, D.F., 2002. A new look at old rocks: a non-supergene origin for BIF-derived in situ high-grade iron ore deposits:
Iron Ore 2002, Proceedings

, Australasian Institute of Mining and Metallurgy, Perth, 2002. p. 107-126.
Lascelles, D.F., 2006a. The genesis of the Hope Downs iron ore deposit, Hamersley Province, Western Australia:
Economic Geology

, 101: 1359-1376.
Lascelles, D.F., 2006b. The Mt Gibson banded iron-formation hosted magnetite deposit: two distinct processes for the origin of enriched iron ore deposits:
Economic Geology

, 101: 651-666.
Lascelles, D.F., 2007. Genesis of the Koolyanobbing iron ore deposits, Yilgarn Province, Western Australia:
Applied Earth Science, Transactions of the Institute for Mining and Metallurgy B

: 116: 86-93.
Lascelles, D.F. and Tsiokos, D.S. 2014. Microplaty hematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits.
Ore Geology Reviews,

66: 309-333.
Lebedeva, M.I., Fletcher, R.C. Balashov, V.N. and Brantley, S.L., 2007. A reactive diffusion model describing transformation of bedrock to saprolite:
Chemical Geology

, 244: 624-645.
Leith, C.K., 1903.
The Mesabi iron-bearing district of Minnesota:

U.S. Geological Survey Monogragph 43, 316p
Li, Z.X., Powell, C.M. and Bowman, R., 1993. Timing and genesis of Hamersley iron-ore deposits:
Exploration Geophysics

, 24: 631-636.
Lobato, L.M., Figueiredo e Silva, R.C., Hagemann, S., Thorne, W. and Zucchtti, M. 2008. Hypogene alteration associated with high-grade banded iron formation-related iron ore. In: S. Hagemann, C. Rosiére, J. Gutzmer and N.J. Beukes, eds. Banded iron formation-related high-grade iron ore.
Reviews in Economic Geology

, 15, 107-128. Society of Economic Geologists Inc. Littleton, Colorado.
Loughnan, F.C., 1969.
Chemical Weathering of the Silicate Minerals

: New York, American Elsevier Publishing Co. Inc., 154 p.
MacClaren M. 1906. On the origin of certain laterites.
Geological Magazine

, 43, 536–547.
MacLeod, W.N., 1966.
The Geology and iron deposits of the Hamersley Range area, Western Australia

: Bulletin 117, Geological Survey of Western Australia, Perth, p. 170pp.
McKenna, D.M. and Harmsworth, R.A. 1998. Brockman No 2 detritals (B2D) iron ore deposit. In: Berkman, D. A., and Mackenzie, D. H., eds.,
Geology of Australia and New Guinean Mineral Deposits.

The Australasian Institute of Mining and Metallurgy, Melbourne. p. 375-380.
McLellan, J. G., Oliver, N. H. S. and Schaubs, P. M., 2004. Fluid flow in extensional environments; numerical modelling with an application to Hamersley iron ores:
Journal of Structural Geology,

26: 1157-1171.
Martin, D M, Nemchin, A A and Powell, C M, 1998. A pre-2.2 Ga age for giant hematite ores of the Hamersley Province, Australia,
Economic Geology,

93:1084-1090.
Miles, K.R. 1953. Koolyanobbing iron ore: in Edwards, A.B., ed., T
he Geology of Australian Ore Deposits

, 5th Empire Mining and Metallurgical Congress, Melbourne, The Australasian Institute of Mining and Metallurgy, p.172-176.
Morey, G.B., 1999. High-grade iron ore deposits of the Mesabi Range, Minnesota - product of a continental-scale Proterozoic ground-water flow system:
Economic Geology

, 94: 133-142.
Morris, R.C., 1980. A textural and mineralogical study of the relationship of iron ore to banded iron-formation in the Hamersley Iron Province of Western Australia:
Economic Geology

, 75: 184-209.
Morris, B.J., Davies, M.B. and Newton, A.W. 1998. Iron ore deposits of the northern Gawler craton, in Berkman, D. A., and Mackenzie, D. H., eds.,
Geology of Australia and New Guinean Mineral Deposits.

: Melbourne. The Australasian Institute of Mining and Metallurgy, p. 401-406.
Morris, R.C., 1980. A textural and mineralogical study of the relationship of iron ore to banded iron-formation in the Hamersley Iron Province of Western Australia:
Economic Geology

, 75: 184-209.
Morris, R.C., 1983. Supergene alteration of banded iron formation: in Trendall, A. F., and Morris, R.C., eds.,
Iron formation: Facts and Problems

: Elsevier Science Publications, Amsterdam, p. 513-534.
Morris, R.C., 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes - a conceptual model, in Wolf, K. H., ed.,
Handbook of Strata-Bound and Stratiform Ore Deposits, 13

: Amsterdam, Elsevier, p. 73-235.
Morris, R.C. 1988.
The goethitic channel ores of the Hamersley Province; a pilot study of the “Robe Pisolite.”

CSIRO, Division of Exploration Geoscience, Restricted Report No. MG 70R, Perth.
Morris, R.C., 1994.
Detrital iron deposits of the Hamersley Province

: CSIRO Division of Exploration and Mining, Perth, Restricted Report 76R.
Morris, R.C. and Fletcher, A.B., 1987. Increased solubility of quartz following ferrous-ferric iron reactions:
Nature

, 330: 558-561.
Morris, R.C. and Kneeshaw, M., 2011. Genesis modelling for the Hamersley BIF-hosted iron ores of Western Australia: a critical review.
Australian Journal of Earth Sciences

. 58: 417-451.
Morris, R.C., Thornber, M.R. and Ewers, W.E., 1980. Deep seated iron ores from banded iron formation:
Nature

, 288: 250-252.
Mukhopadhyay, J., Gutzmer, J, Beukes, N.J. and Hayashi, K.I., 2008. Stratabound magnetite deposits from the eastern outcrop belt of the Archaean Iron Ore Group, Singhbhum craton, India.
Applied Earth Science. Transcripts of the Institution of Mining and Metallurgy, Section B,

117: 175-186.
Nahon, D., and Tardy, Y., 1992. The ferruginous laterites: in Butt, C. R. M., and Zeegers, H., eds.,
Regolith exploration geochemistry in tropical and subtropical terrains, 4. Handbook of Exploration Geochemistry,

Elsevier Science Publishers, Amsterdam, p. 41-55.
Neale, J., 1975a. Iron ore deposits in the Marra Mamba Formation at Mining area “C,” Hamersley Iron Province: in Knight, C.L. ed.,
The Economic Geology of Australia and Papua New Guinea

, The Australasian Institute of Mining and Metallurgy, Monograph 5, p.924-932.
Neale, J., 1975b. Mount Goldsworthy iron ore deposits, W.A.: in Knight, C.L. ed.,
The Economic Geology of Australia and Papua New Guinea

, The Australasian Institute of Mining and Metallurgy, Monograph 5, p.932-936.
Ollier, C.D. and Galloway, R.W., 1990. The laterite profile, ferricrete and unconformity:
Catena,

17: 97-109.
Ollier, C. and Pain, C., 1996,
Regolith, Soils and Landforms:

John Wiley and Sons, New York, 316p.
Paquay, R.D. and Ness, P.K., 1998. Hope Downs iron ore deposits: in Berkman, D. A., and Mackenzie, D. H., eds.,
Geology of Australia and New Guinean Mineral Deposits.

: Melbourne., The Australasian Institute of Mining and Metallurgy, p. 381-386.
Paton, T.R., 1978.
The Formation of Soil Material:

George Allen and Unwin, London, 143 p.
Paz C. G. and Rodriguez T. T. 2008. Factors of soil formation. In: Chesworth W. ed.
Encyclopedia of Soil Science

, p. 229–230. Springer, New York.
Podmore, D.C. 1990. Shay Gap-Sunrise Hill and Nimingara iron ore deposits. In
Geology of the Mineral Deposits of Australia and Papua New Guinea

(Ed. F.E. Hughes). pp. 137-140 (The Australasian Institute of Mining and Metallurgy, Melbourne).
Powell, C.M., Oliver, N.H.S., Li, Z.X., Martin, D.M. and Ronaszeki, J., 1999. Synorogenic hydrothermal origin for giant Hamersley iron oxide ore bodies:
Geology

, 27: 175-178.
Ramanaidou, E.R., 2009. Genesis of lateritic iron ore from banded iron-formation in the Capanema mine (Minas Gerais, Brazil).
Australian Journal of Earth Sciences

, 56: 605-620.
Ribeiro, D.T., Pires, F.R.M. and Carvalho, R.M., 2002. Supergene iron ore and disorder:
Proceedings Iron Ore 2002

, Australasian Institute for Mining and Metallurgy, Perth. p. 81-89.
Roberts, H.M. and Bartley, M.W., 1943. Hydrothermal replacement in deep-seated ores of the Lake Superior region:
Economic Geology

, 38: 1-24.
Robertson, I.D.M. and Butt, C.R.M., 1997.
Atlas of weathered rocks

. CRC LEME open file report 1, CSIRO Exploration and Mining, Perth, 125p.
Rosière, C.A. and Rios, F.J., 2004. The origin of hematite in high-grade iron ores based on infrared microscopy and fluid inclusion studies: the example of the Conceição Mine, Quadrilátero Ferrífero, Brazil:
Economic Geology

, 99: 611-621.
Rosière, C.A., Spier, C.A. Rios, F.J. and Suckau, V.E., 2008. The itabirites of the Quadriláltero Ferrífero and related high-grade iron ore deposits: An overview. In S. Hagemann, C. Rosiere, J. Gutzmer and N.J. Beukes, eds. Banded iron formation related high-grade iron ore.
Reviews in Economic Geology

. 15: 223-254.
Siever, R., 1957. The silica budget in the sedimentary cycle:
American Mineralogist

, 42: 821-841.
Tardy, and Roquin, C., 1986. Geochemistry and evolution of lateritic landscapes. in Martini, I.P. and Chesworth, W., eds.,
Weathering, Soils and Paleosols.

, Elsevier, Amsterdam. pp. 407-443.
Taylor G. and Butt C. R. M. 1997. The Australian regolith and mineral exploration.
AGSO Journal of Australian Geology and Geophysics

17, 55–67.
Taylor, D., Dalstra, H.J., Harding, A.E., Broadbent, G.C. and Barley, M.E., 2001. Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia:
Economic Geology

, 96: 837-873.
Thornber, M.R., 1975. Supergene alteration of sulphides, 1. A chemical model based on massive nickel sulphide deposits at Kambalda, Western Australia:
Chemical Geology

, 15: 1-14.
Thorne, W.S., Hagemann, S.G. and Barley, M.E. 2004. Petrographic and geochemical evidence for hydrothermal evolution of the North Deposit, Mt Tom Price, Western Australia:
Mineralium Deposita

, 39: 766-783.
Thorne, W.S. Hagemann,S.G., Sepe, D., Dalstra, H.J. and Banks, D.A. 2014. Structural control, hydrothermal alteration zonation and fluid chemistry of the concealed, BIF-hosted high-grade iron 4EE ore body at the Paraburdoo 4E deposit, Hamersley Province, Western Australia,
Economic Geology

. 109: 1529-1562.
Trendall, A.F. and Blockley, J.G., 1970.
The iron formations of the Precambrian Hamersley Group, Western Australia, with special reference to the associated crocidolite

: Bulletin 119, Geological Survey of Western Australia, Perth. 353p.
Trescases, J-J., 1992. Chemical Weathering: in Butt, C.R.M. and Zeegers, H., eds.,
Regolith Exploration Geochemistry in Tropical and Subtropical Terrains

. Handbook of Exploration Geochemistry. 4: 25-40. Elsevier Science Publishers, Amsterdam.
Waters, P.J. 1998. The Y2-3 and Y10 iron ore deposits, Yarrie: in Berkman, D. A., and Mackenzie, D. H., eds.,
Geology of Australia and New Guinean Mineral Deposits.

: Melbourne., The Australasian Institute of Mining and Metallurgy, p. 371-374.

Chapter 6

Adair, D.L., 1975. Middle Robe River iron ore deposits: in Knight, C.L. (Ed.), Economic geology of Australia and Papua New Guinea,

Australasian Institute of Mining and Metallurgy, Melbourne, Vol. 1 Metals, 943-945.
Adeleye, D.R., 1973. Origin of ironstones, an example from the middle Niger Valley, Nigeria:
Journal of Sedimentary Petrology

, 43, 709-723.
Anand, R.R., Gilkes, R.J., Roach, G.I.D., 1991. Geochemical and mineralogical characteristics of bauxites, Darling Range, Western Australia:
Applied Geochemistry

, 6, 233-248.
Anand, R.R., Paine, M., 2002. Regolith geology of the Yilgarn Craton, Western Australia: Implications for exploration.
Australian Journal of Earth Sciences

, 49, 3-162.
Anand, R.R., Butt, C.R.M., 2010. A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia.
Australian Journal of Earth Sciences.

57, 1015-1114.
Bolton, B.R., Frakes, L.A., Cook, J.N., 1988. Petrography and origin of inversely graded manganese pisolites from Groote Eylandt, Australia.
Ore Geology Reviews

, 4, 47-69.
Brimhall, G.H., Lewis, C.J., 1992. Bauxite and laterite soil ores. In: Chesworth, W, (Ed.),
Encyclopedia of Earth System Science,

Academic Press Inc., 321-336.
Butler, T.J.T., 1976.
Geology of the Tertiary ironstones in the middle and upper Robe River area, Pilbara Region, Western Australia.

M. Sc. thesis, University of Western Australia, Perth.
Butt, C.R.M., 1979. Geochemistry of a pseudogossan developed on a black shale-dolerite contact, Killara, Western Australia:
Journal of Geochemical Exploration

, 11, 31-156.
Clarke, N., Kepert, D., Simpson, C., Edwards, D., 2009. Discovery of the Solomon iron deposits.
Proceedings Iron Ore 2009

Perth, Western Australia. Australasian Institute of Mining and Metallurgy, Publication Series, No.7/2009. pp. 51-58.
Dalstra, H.J., Gill, T., Faragher, A., Scott, B., Kakabeeke, V., 2009. Channel iron deposits – A major new district around the Caliwingina Creek, Central Hamersley Ranges, Western Australia.
Proceedings Iron Ore 2009

, Perth, Western Australia. Australasian Institute of Mining and Metallurgy, Publication Series, No.7/2009. pp. 59-66.
Danišik, M., Ramanaidou, E.R., Evans, N.J., McDonald, B.J., Mayers, C., McInnes, B.I.A., 2011. (U-Th)/He geochronology of channel iron deposits, Robe River, Hamersley Province, Australia – implications for ore genesis.
Proceedings Iron Ore 2011

, Perth, Western Australia. Australasian Institute of Mining and Metallurgy, Publication Series, No. 6/20011. pp. 83-86.
Danišik, M., Ramanaidou, E.R., Evans, N.J., McDonald, B.J., Mayers, C., McInnes, B.I.A., 2013. (U-Th)/He geochronology of channel iron deposits, Robe River, Hamersley Province, Australia.
Chemical Geology

. 354, 150-162.
Eggleton, T., Taylor, G., 2006. Pisoliths – formed by accretion or internal reorganisation?
Conference Proceedings 2006 Regolith Symposia: Dispersion and consolidation of ideas

. CRC LEME, Perth.

Firman, J.B., 2006. Geochronology and land surfaces in relation to soils in Australia

. Minuteman Press, Fremantle, (School of Earth and Geographical Sciences Thesis Library, University of Western Australia).
Glassford, D.K., Semeniuk, V., 1995. Desert-aeolian origin of late Cenozoic regolith in arid and semi-arid Southwestern Australia:
Palaeogeography, Palaeoclimatology, Palaeoecology

, 114, 131-166.
Hall, G.C., Kneeshaw, M., 1990. Yandicoogina-Marillana pisolitic iron deposits. In: Hughes, F.E. (ed.).
Geology of the mineral deposits of Australia and Papua New Guinea

. Australasian Institute of Mining and Metallurgy, Melbourne, pp. 1581-1586.
Harms, J.E., Morgan, B.D., 1964. Pisolitic limonite deposits in northwest Australia.
Proceedings of the Australasian Institute of Mining and Metallurgy,

212, 91-24.
Heim, J.A., Vasconcelos, P.M., Shuster, D.L., Farley, K.A., Broadbent, G., 2006. Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethite, Hamersley Province, Australia.
Geology,

34, 173-176.
Hunt, P.A., 1985.
The mobility of silicon and iron in the near surface zone; a re-evaluation of the concept of duricrust in central and eastern New South Wales

. Ph.D thesis, Macquarie University, Sydney, Australia. 343pp.
Jackson, J.A., 1997.
Glossary of Geol

ogy, 4

th

edition: American Geological Institute, 769pp.
Klenowski, G., 2015. Engineering: Cost-effective construction techniques.
Australasian Institute of Mining and Metallurgy Bulletin

, April 2015, 84-86.
Kneeshaw, M., Morris, R.C., 2014. The Cenozoic detrital iron deposits of the Hamersley Province, Western Australia.
Australian Journal of Earth Sciences

, 61, 513-586.
Lascelles, D.F., 1973
. Weathering profiles of the Fifield magnesite deposit, New South Wales

. M. Sc. Thesis, Macquarie University, Sydney, Australia. 188pp.
Lascelles, D.F. 2002. A new look at old rocks: a non-supergene origin for BIF-derived in situ high-grade iron ore deposits.
Proceedings Iron Ore 2002

, Australasian Institute of Mining and Metallurgy, Perth, 2002. pp. 107-126.
Lascelles, D.F., 2006a. The genesis of the Hope Downs iron ore deposit, Hamersley Province, Western Australia.
Economic Geology

, 101, 1359-1376.
Lascelles, D.F., 2006b. The Mt Gibson banded iron-formation hosted magnetite deposit: two distinct processes for the origin of enriched iron ore deposits.
Economic Geology

, 101, 651-666.
Lascelles, D.F., 2007. The origin of pisolitic iron ore deposits.
Proceedings Iron Ore 2007,

Australasian Institute of Mining and Metallurgy, Publication Series 6/2007, pp. 113-121.
Lascelles, D.F. 2012. Banded iron formation to high-grade iron ore: a critical review of supergene enrichment models.
Australian Journal of Earth Sciences.

59(8): 1105-1125.
Lascelles, D.F., 2014. Paleoproterozoic regolith and wave cut platforms preserved on the northern margin of the Yilgarn Craton, Western Australia.
Australian Journal of Earth Sciences.

61, 843-863.
Lascelles, D.F., Tsiokos, D.S., 2014. Microplaty hematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits.
Ore Geology Reviews.

66, 309-333.
Lascelles, D.F., 2016. The origin of terrestrial pisoliths and the genesis of the terrestrial pisolitic iron ore deposits: Raindrops and sheetwash in a semi-arid environment.
Sedimentary Geology

. 341: 232-244.
Loughnan, F.C., Bayliss, P., 1961. The mineralogy of the bauxite deposits near Weipa, Queensland.
American Mineralogist,

46, 209-217.
MacLeod, W.N., de la Hunty, L.E., Jones, W.R., Halligan, R., 1963
. A preliminary report on the Hamersley iron province, North West Division

, Annual Report of the Mines Department, Western Australia for 1962. pp 90-100.
MacLeod, W.N., 1966.
The Geology and iron deposits of the Hamersley Range area

, Western Australia. Bulletin 117, Geological Survey of Western Australia, Perth, p. 170pp.
MacPhail, M.K., Stone, M.S., 2004. Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia.
Australian Journal of Earth Sciences

, 51, 497-520.
Mather, C.C., Gilkes, R.J., Thorne, R.L., Anand, R.R., 2014. Quantitative analysis of clay matrix within ferruginous pisoliths.
Proceedings of the Australian Clay Mineral Society Conference,

Perth. pp. 85-90.
Morris, R.C., 1988.
The goethitic channel ores of the Hamersley Province; a pilot study of the “Robe Pisolite.”

CSIRO, Division of Exploration Geoscience, Restricted Report No. MG 70R, Perth.
Morris, R.C., 1994.
Detrital iron deposits of the Hamersley Province.

CSIRO Division of Exploration and Mining, Perth, Restricted Report 76R.
Morris, R.C., Ramanaidou, E.R., 2007. Genesis of the channel iron deposits (CID) of the Pilbara Region, Western Australia
. Australian Journal of Earth Sciences,

54(5), 733-756.
Morris, R.C., Ramanaidou, E.R., Horwitz, R.C., 1993.
Channel iron deposits of the Hamersley Province

. CSIRO/AMIRA, Exploration and Mining, Restricted Report 399R, Perth.
Nahon, D., Carozzi, A.V., Parron, C., 1980. Lateritic weathering as a mechanism for the generation of ferruginous ooids.
Journal of Sedimentary Petrology.

50, 1287-1298.
Nahon, D. and Tardy, Y., 1992. The ferruginous laterites. In: Butt, C. R. M., Zeegers, H. (eds.), Regolith exploration geochemistry in tropical and subtropical terrains, 4.
Handbook of Exploration Geochemistry,

Elsevier Science Publishers, Amsterdam, pp. 41-55.
Parker, C.W., Wolf, J.A., Auler, A.S., Barton, H.A., Senko, J.M., 2013. Microbial reducibility of Fe(III) phases associated with the genesis of iron ore caves in the Iron Quadrangle, Minas Gerais, Brazil.
Minerals

, 3, 395-411.
Pettijohn, F.J., 1957.
Sedimentary Rocks

. Harper & Bros. New York. 718p.
Petts, A.E., McDonald, G.D., Corlis, N.J., 2011. Channel and detrital iron deposits of the Flinders Mines Pilbara iron ore.
Proceedings Iron Ore 2011

, Perth, Western Australia. Australasian Institute of Mining and Metallurgy Publication Series, No.6/20011. pp. 125-132.
Ramanaidou, E.R., Horwitz, R.C., Morris, R.C., 1991.
Channel iron deposits

, Progress report No.2. CSIRO/AMIRA, Exploration Geoscience Restricted Report 162R.
Ramanaidou, E.R., Morris, R.C., Horwitz, R.C., 2003. Channel iron deposits of the Hamersley Province, Western Australia, with appendix by M, Kneeshaw:
Australian Journal of Earth Sciences

, 50, 669-690.
Schwann, P.B., 2009. An alternative genesis for pisolites and channel iron deposits in Western Australia.
Proceedings Iron Ore 2009

, Perth, Western Australia. Australasian Institute of Mining and Metallurgy Publication Series, No.7/2009. pp. 171-185.
Siehl, V.A., Thein, J., 1989. Minette type ironstones. In: Young,

T.P., Taylor,

W.E.G., (eds.), Phanerozoic ironstones

. Geological Society of London, Special Publication No. 46. pp. 175-193.
Stone, M.S., George, A.D., Kneeshaw, M., Barley, M.E., 2002. Stratigraphy and sedimentary features of the Tertiary Yandi Channel Iron Deposits, Hamersley Province, Western Australia.
Proceedings Iron Ore 2002

, Australasian Institute of Mining and Metallurgy, Perth. pp.137-144.
Taylor, G., Eggleton, R.A., 2008. Genesis of pisoliths and of the Weipa bauxite deposit, northern Australia.
Australian Journal Earth Sciences

. 55, S1, S87-S103.
Taylor, G., Eggleton, R.A., Holzhauer, C.C., Maconachie, L.A., Gordon, M., Brown M.C., McQueen. K.G., 1992. Cool Climate Lateritic and Bauxitic Weathering.
Journal of Geology.

100, 669-677.
Wilde, S.A., Low, G.H., 1978.
Explanatory notes on the Perth Geological Sheet

. Geological Survey of Western Australia.
Yanitzkii, A.L., 1960. Oligocene oolitic iron ores of northern Turgai and their genesis.
Transactions of the Institute of Geology and Ore Deposits

. No. 37, pp. 219. Academy of Sciences, Moscow.
Young, T.P. and Taylor, W.E., 1989. (Eds.),
Phanerozoic Ironstones

. Geological Society Special Publication No 46, pp. 51-63.
Zimmerman, D.O., Adair, D.L., Collings, P.S., 1973. Geology of the Upper Robe River iron deposits. In
Proceedings of the Western Australia Conference, 1973

. Australasian Institute of Mining and Metallurgy, Melbourne, pp. 143-152.
Zitzmann, A., (Ed.), 1977.
The iron ore deposits of Europe and adjacent areas,

Vol. 1. Federal Institute of Geoscience and Natural Resources, Hanover, 418p.

Keywords: BIF genesis, iron ore, pisolitic iron ore

You have not viewed any product yet.