Angiotensin-Converting Enzyme: Functions and Role in Disease

Anaberta Cardador-Martínez (Editor)
Escuela de ingeniería y Ciencias, Tecnologico de Monterrey Campus Querétaro, Querétaro, México

Cristian Jiménez-Martinez (Editor)
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biologicas-IPN, Mexico

Series: Biochemistry Research Trends
BISAC: SCI007000

Clear

$270.00

Volume 10

Issue 1

Volume 2

Volume 3

Special issue: Resilience in breaking the cycle of children’s environmental health disparities
Edited by I Leslie Rubin, Robert J Geller, Abby Mutic, Benjamin A Gitterman, Nathan Mutic, Wayne Garfinkel, Claire D Coles, Kurt Martinuzzi, and Joav Merrick

eBook

Digitally watermarked, DRM-free.
Immediate eBook download after purchase.

Product price
Additional options total:
Order total:

Quantity:

Details

Angiotensin-converting enzyme (ACE) is a well-known zinc-metallopeptidase that converts angiotensin I to the potent vasoconstrictor angiotensin II and degrades bradykinin, a powerful vasodilator, both for the regulation of vascular tone and cardiac functions. Other natural substrates of ACE were identified broadening the functions of this enzyme within different physiological contexts such as neuronal metabolism, hematopoiesis, digestion, and reproduction. In this context, ACE has an essential role in diseases, for instance, hypertension, Alzheimer’s disease, oxidative stress, sperm maturation and fertility, intraocular pressure, bone metabolism, fibrillary glomerulonephritis, among others.

This book describes the role of ACE as a part of the Renin-Angiotensin-System, on different metabolic processes related to some diseases, such as the examples already mentioned. Moreover, ACE is related to adipose tissue.

The modulation of ACE can modulate hypertension and diseases related to this enzyme. Captopril is the first successful ACE inhibitor in the treatment of hypertension; however, it has adverse effects such as dry cough, dizziness, lightheadedness or loss of taste and others. The search for alternatives to Captopril has increased research on bioactive peptides. Then, several book chapters describe how ACE can be modulated by bioactive peptides, which are short amino acid sequences previously encrypted in whole proteins and liberated through the digestion process.
Animal and vegetal proteins can be used as a source of bioactive peptides. Milk, milk-derived food products and lionfish are examples of animal proteins, while several legumes such as beans and peanuts are vegetable sources of bioactive peptides.
(Imprint: Nova)

Preface

Acknowledgements

Chapter 1. Renin-Angiotensin-Aldosterone System and Oxidative Stress
(Michael Demosthenous, Konstantinos Triantafyllou and Nikolaos Koumallos, Department of Cardiac Surgery, Hippocration General Hospital, Athens, Greece)

Chapter 2. The role of the angiotensin-converting enzyme in male reproduction and fertility – from experimental models to clinical studies
(Nina Atanassova, Yvetta Koeva, and Emilia Lakova (Institute of Experimental Morphology, Pathology, and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria and others)

Chapter 3. A review of the effects of Angiotensin and Angiotensin-converting enzyme and/or angiotensin receptor inhibition on airway and respiratory mechanics in respiratory disease and healthy subjects
(Alessandro Rubini, Daniele del Monte, Department of Biomedical Sciences, Section Physiology, University of Padova)

Chapter 4. The perspectives of the topical use of inhibitors of the angiotensin-converting enzyme for the treatment of eye diseases accompanied by ischemia and increased intraocular pressure
(Grigoryev A.V., Beznos O.V., Binevski P.V., Pavlenko T.P., Struchkova S.V., Chesnokova N.B., Kost O.A., Helmholtz Institute of Eye Diseases, Moscow, Russia and Lomonosov Moscow State University)

Chapter 5. Anti-Obesity and antihypertensive peptides: its relationship to adipose tissue
(Erika B. León Espinosa, Cristian Jimenez Martinez, Mayra Ramírez Díaz, Rosy G. Cruz Monterrosa, Adolfo A. Rayas Amor, Department of Health Sciences, Universidad Autónoma Metropolitana, Lerma de Villada, Toluca Estado de México and others)

Chapter 6. Angiotensin-1- converting enzyme inhibition by bioactive peptides from milk proteins
(Lucía Abadía-García and Silvia L. Amaya-Llano, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México)

Chapter 7. Fatty acids and bio-peptides from chia seeds: a new alternative for the control of the Angiotensin-Converting Enzyme
(Yasser Chim-Chi, Alejandro Ortiz-Fernández, Raciel Estrada-León, and Emilio Pérez-Pacheco, Instituto Tecnológico Superior de Calkiní, Campeche, México)

Chapter 8. Inhibitory effect of angiotensin-converting enzyme and antioxidant capacity of Panela type cheeses
(Gloria Bajaña, Jorge Pacheco, Andrea Orellana-Manzano, Gabriel Marín, Karina Gavin, Juan Madera,Patricia Manzano, Anaberta Cardador-Martínez, Sandra T. Martín del Campo, María José Vizcaíno, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), Guayaquil, Ecuador and others)

Chapter 9. Angiotensin-Converting Enzyme Control Mediated by Phenolic Compounds
(Alejandra B. Tovar-García, Mariana Molina-Reséndiz, Graciela A. Miranda-Mejía, Paola Raphaela Cáceres-Challapa, Javier Antopia-Palacios, Tecnologico de Monterrey. Escuela de Ingeniería y Ciencias. Querétaro. Mexico

Chapter 10. Angiotensin inhibitory peptides derived from legume seeds proteins
(Iván Balderas-León, Anaberta Cardador-Martínez, Angel I. Hernández-Aguirre, Tecnologico de Monterrey. Escuela de Ingeniería y Ciencias. Querétaro. Mexico)

Chapter 11. Inhibition of angiotensin converting enzyme (ACE) by peptide fractions obtained from lionfish (Pterois volitans L.) muscle hydrolysates
Santiago Gallegos-Tintoré, Yordi Estrella-Millán, Azucena Chuc-Koyoc, Irma Aranda-González, David Betancur-Ancona, David Rosel-Sosa and Luis Chel-Guerrero, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ingenierías y Ciencias Exactas, Mérida, Yucatán, México and others)

Chapter 12. Modulation of Angiotensin-1-converting enzyme by bioactive peptides from animal and vegetal origin
(Tomás Tovar-Benítez, Cristian Jiménez-Martínez, Nalleli Concepción Pérez-Pérez and Josefina Porras-Saavedra, Ingeniería en Industrias Alimentarias, Instituto Tecnológico Superior del Occidente del Estado de Hidalgo, Mixquiahuala de Juárez, Hidalgo, México and others)

Chapter 13. The genus Phaseolus as a source for ACE inhibitory peptides
(Peter Knauth, María Teresa Espino Sevilla, Zaira López, Cell Biology Laboratory, University of Guadalajara, Regional Centre of the Cienéga, Ocotlan, Jalisco Mexico

Chapter 14. Obtainment and characterization of bioactive peptides with antihypertensive activity of peanut (Arachis hypogaea) protein hydrolysates
(Maritza Cruz Castellanos, Saúl González Cuna, Cristian Jimenez Martínez, Xaris M. Sánchez Chino, Dávila Ortiz Gloria, Escuela Nacional de Ciencias Biológicas- Instituto Politecnico Nacional, CdMx, Mexico and others)

Chapter 15. The action of the Renin-Angiotensin System on Bone Metabolism
(Zehra Berberoglu, VM Medical Park Hospital, Department of Endocrinology and Metabolism, Bursa, Turkey)

Chapter 16. The role of angiotensin-converting enzyme in hypertension
(Janet Carrasco-Castilla, Xariss Sánchez-Chino, Cristian Jiménez-Martínez, and Gloria Dávila-Ortiz, Centro de Estudios Científicos y Tecnológicos, No. 17, Instituto Politécnico Nacional, León, Guanajuato, México and others)

Chapter 17. Potential effects of Renin-Angiotensin-Aldosterone System (RAS) blockers in the treatment of fibrillary glomerulonephritis (FGN)
(Deli N. Tirado-González, Félix Castrejón-Garfias, Gustavo Tirado-Estrada, Diana A. Anaya-Ávila, Tecnológico Nacional de México (TecNM)/ITEL, División de Estudios de Posgrado e Investigación (DEPI), Aguascalientes, México and others)

Index

You have not viewed any product yet.