Analytical Models of Thermal Stresses in Anisotropic Composite Materials

$210.00

Ladislav Ceniga – Research Professor, Institute of Material Research, Kosice, Slovak Republic

Series: Materials Science and Technologies
BISAC: TEC021000

This book presents analytical models of thermal stresses in two- and three-component composites with anisotropic components. Within the analytical modeling, the two- and three-component composites are replaced by multi-particle-matrix and multi-particle-envelope-matrix systems, respectively. These model systems consist of anisotropic spherical particles (either without or with an envelope on the particle surface), which are periodically distributed in an anisotropic infinite matrix. The thermal stresses that originate below the relaxation temperature during a cooling process are a consequence of the difference in dimensions of the components. This difference is a consequence of different thermal expansion coefficients and/or a consequence of the phase-transformation induced strain, which is determined for anisotropic crystal lattices. The analytical modelling results from mutually different mathematical procedures, which are applied to fundamental equations of solid continuum mechanics (Hooke’s law for an anisotropic elastic solid continuum, Cauchy’s law, and compatibility and equilibrium equations). The thermal stress-strain state in each anisotropic component of the model systems is determined by several different solutions, which fulfill boundary conditions. Due to these different solutions, a principle of minimal total potential energy of an elastic solid body is then required to be considered. Results of this book are applicable within basic research (solid continuum mechanics, theoretical physics, materials science, etc.) as well as within the practice of engineering. (Imprint: Nova)

Table of Contents

Table of Contents

Preface

Chapter 1. Outline of Principles

Chapter 2. Types of Composite Materials Model Systems

Chapter 3. Selected Topics on Solid Continuum Mechanics

Chapter 4. Reason of Thermal Stresses

Chapter 5. Boundary Conditions

Chapter 6. Mathematical Procedure 1

Chapter 7. Thermal Stresses in Anisotropic Model Systems 1

Chapter 8. Mathematical Procedure 2

Chapter 9. Thermal Stresses in Anisotropic Model Systems 2

Chapter 10. Mathematical Procedures 1, 2

Appendix

References

About the Author

Index


References

[1] Mizutani, T. J. Mater. Sci. 1998, 11, 68–72.

[2] Li, S.; Sauer, R.A.; Wang, G. J. Appl. Mech. 2007, 74, 770–783.

[3] Li, S.; Sauer, R.A.; Wang, G. J. Appl. Mech. 2007, 74, 784–797.

[4] Kushch, V.I. Int. Appl. Mech. 2000, 36, 225-233.

[5] Kushch, V.I. Int. Appl. Mech. 2000, 36, 623-630.

[6] Kushch, V.I. Int. Appl. Mech. 2004, 40, 893-899.

[7] Kushch, V.I. Int. Appl. Mech. 2004, 40, 1042-1049.

[8] Kushch, V.I. Int. J. Sol. Struct. 2003, 40, 6369-6388.

[9] Kushch, V.I. Int. J. Sol. Struct. 2004, 41, 885-906.

[10] Kushch, V.I. Int. J. Sol. Struct. 2005, 42, 5491-5512.

[11] Kushch,V.I.; Shmegera, S.V.; Mishnaevsky,L. Jr.Int. J. Sol.Struct.2008, 45, 2758-2784.

[12] Kushch,V.I.; Shmegera, S.V.; Mishnaevsky,L. Jr.Int. J. Sol.Struct.2008, 45, 5103-5117.

[13] Guagliano, M. J. Mater. Eng. Perform. 1998, 7, 183–189.

[14] Broberg, K.B. Comput. Mech. 1997, 19, 447–452.

[15] Ramakrishnan, N. Bull. Mater. Sci. 1997, 20, 885–900.

194 References

[16] Babusˇka, I.; Andersson, B.; Smith, P.J.; Levin, L.; Computer Methods in Appl. Mech. Eng. 1999, 172, 27–77.

[17] Bystro¨m., J. Composites: Part B 2003, 34, 587-592.

[18] Wu, Y.; Dong, Z. Mater. Sci. Eng. A. 1995, 203, 314–323.

[19] Sangani, A.S.; Mo, G. J. Mech. Phys. Sol. 1997, 45, 2001–2031.

[20] Matousˇ, K.; Lepsˇ, M.; Zeman, J; ˇSejnoha, M. Comp. Meth. Appl. Mech. Eng. 2000, 190, 1629–1650.

[21] ˇSejnoha, M.; Zeman, J. Comp. Meth. Appl. Mech. Eng. 2002, 191, 50275044.

[22] ˇSejnoha, M.; Zeman, J. Int. J. Eng. Sci. 2008, 46, 513-526.

[23] ˇSejnoha, M.; Zeman, J. Int. J. Sol. Struct. 2004, 41, 6549-6571.

[24] Gajdosˇ´ık, J.; Zeman, J.; ˇSejnoha, M. Probal. Eng. Mech. 2006, 21, 317329.

[25] Mura, T. Micromechanics of Defects in Solids;Martinus NijhoffPublishers: Dordrecht, NL, 1987; pp 388–392.

[26] Brdicˇka, M.; Samek, L.; Sopko, B. Mechanics of Continuum; Academia: Prague, CZ, 2000; pp 205–206.

[27] Eshelby, J.D. Proc. Royal Soc. London A 1957, 241, 376-396.

[28] Trebunˇa, F.; Bigosˇ, P. Intensification of Technical Capability of Heavy Supporting Structures; Technical University: Kosˇice, SK, 1998; pp 56– 58.

[29] Trebunˇa, F.; ˇSimcˇa´k, F.; Bursˇa´k, M.; Bocko, J.; ˇSarga, P.; Pa´stor, M.; Trebunˇa, P. Metalurgija 2007, 46, 41–46.

[30] Trebunˇa, F.; ˇSimcˇa´k, F.; Bocko, J.; ˇSarga, P.; Trebunˇa, P.; Pa´stor, M.; Mihok, J. Metalurgija2008, 47, 133–137.

References 195

[31] Trebunˇa, F.; Jadlovsky´, J.; Frankovsky´, P.; Pa´stor, M. Proc. 48th Int. Sci. Confer. Exp. Stress Anal. 2010, 435–442.

[32] Trebunˇa, F.; Hunady, R.; Znamena´kova´, M. Proc. 48th Int. Sci. Confer. Exp. Stress Anal. 2010, 443–449.

[33] Trebunˇa, F.; Hunady, R.; Znamena´kova´, M. Proc. 48th Int. Sci. Confer. Exp. Stress Anal. 2010, 451–458.

[34] Shin, H.; Earmme, Y.Y. Int. J. Fract. 2004, 126, L35–L40.

[35] Li, J.Y.; Dunn, M.L. Phil. Magaz. A 1998, 77, 1341–1350.

[36] Hajko, V.; Potocky´, L.; Zentko, A. Magnetization Processes; Alfa: Bratislava, SK, 1982; pp 37–45.

[37] Diko, P. Supercond. Sci. Technol. 1998, 11, 68–72.

[38] Diko, P. Supercond. Sci. Technol. 2004, 17, R45–R58.

[39] Diko, P. Mater. Sci. Eng. B 1998, 83, 149–153.

[40] Diko, P.; Krabbes, G. Supercond. Sci. Technol. 2003, 16, 90–93.

[41] Davidge, R.W.; Green, T.J. J. Mater. Sci. 1968, 3, 629–634.

[42] Selsing, J. J. Amer. Cer. Soc. 1961, 44, 419–419.

[43] Mastelaro, V.R.; Zanotto, E.D. J. Non-Crystal. Sol. 1996, 194, 297–304.

[44] Mastelaro, V.R.; Zanotto, E.D. J. Non-Crystal. Sol. 1999, 247, 79–86.

[45] Serbena, F.C.; Zanotto, E.D. J. Non-Crystal. Sol. 2012, 358, 975–984.

[46] Chmel´ık, F.; Trn´ık, A.; ˇStubnˇa, I.;, Pesˇicˇka, J. J. Eur. Ceram. Soc. 2011, 31, 2205-2209.

[47] Knapek, M.; Hu´lan, T.; Mina´rik, P.; Dobronˇ, P.; ˇStubnˇa, I.; Stra´ska´, J.; Chmel´ık, F. J. Eur. Ceram. Soc. 2016, 36, 221-226.

[48] Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity; McGraw-Hill: New York, USA, 1951; pp 213–225.

196 References

[49] Kuba, F. Theory of Elasticity and Selected Applications; SNTL/Alfa: Prague, CZ, 1982; pp 96–101.

[50] Trebunˇa, F.; ˇSimcˇa´k, F.; Jurica, V. Elasticity and Strength I; Technical University: Kosˇice, SK, 2005; pp 68–76.

[51] Trebunˇa, F.; ˇSimcˇa´k, F.; Jurica, V. Examples and Problems of Elasticity and Strength I; Technical University: Kosˇice, SK, 2002; pp 135–138.

[52] Trebunˇa, F.; ˇSimcˇa´k, F.; Jurica, V. Examples and Problems of Elasticity and Strength II; Technical University: Kosˇice, SK, 2005; pp 73–78.

[53] Skocˇovsky´, P.; Boku˚vka, O.; Palcˇek, P. Materials Science; EDIS: ˇZilina, SK, 1996; pp 75–79.

[54] Lekhnitskii, S.G. Theory of Elasticity of an Anisotropic Elastic Body; MIR Publishers: Moscow, RU, 1981; pp 36–42.

[55] Rektorys, K. Review of Applied Mathematics; SNTL: Prague, CZ, 1973; pp 156–162.

[56] Hearmon, R.F.S. Introduction to Applied Anisotropic Elasticity; The Clarendon Press: Oxford, UK, 1961; pp 12–15.

[57] Trebunˇa, F.; Jurica, V.; ˇSimcˇa´k, F. Elasticity and Strength II; Technical University: Kosˇice, SK; 2000, pp 36–39.

[58] Trebunˇa, F.; ˇSimcˇa´k, F.; Bocko, J. Resolved Examples and Problems of Elasticityand StrengthI; TechnicalUniversity: Kosˇice, SK, 2009;pp 65– 69.

[59] Novikova, S.I. Measur. Techniq. 1984, 27, 933–938.

[60] Ceniga, L. Meccanica 2015, 50, 2421–2430.

[61] Ceniga, L. Mech. Res. Commun. 2015, 50, 159–163.

[62] Ceniga, L. Thermal Stresses: Design, Behavior and Applications; Webb, A.R.; Ed.; Nova Science Publishers: New York, US, 2016; pp 105–152.

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!