Table of Contents
Table of Contents
Preface
Chapter 1. Outline of Principles
Chapter 2. Types of Composite Materials Model Systems
Chapter 3. Selected Topics on Solid Continuum Mechanics
Chapter 4. Reason of Thermal Stresses
Chapter 5. Boundary Conditions
Chapter 6. Mathematical Procedure 1
Chapter 7. Thermal Stresses in Anisotropic Model Systems 1
Chapter 8. Mathematical Procedure 2
Chapter 9. Thermal Stresses in Anisotropic Model Systems 2
Chapter 10. Mathematical Procedures 1, 2
Appendix
References
About the Author
Index
References
[1] Mizutani, T. J. Mater. Sci. 1998, 11, 68–72.
[2] Li, S.; Sauer, R.A.; Wang, G. J. Appl. Mech. 2007, 74, 770–783.
[3] Li, S.; Sauer, R.A.; Wang, G. J. Appl. Mech. 2007, 74, 784–797.
[4] Kushch, V.I. Int. Appl. Mech. 2000, 36, 225-233.
[5] Kushch, V.I. Int. Appl. Mech. 2000, 36, 623-630.
[6] Kushch, V.I. Int. Appl. Mech. 2004, 40, 893-899.
[7] Kushch, V.I. Int. Appl. Mech. 2004, 40, 1042-1049.
[8] Kushch, V.I. Int. J. Sol. Struct. 2003, 40, 6369-6388.
[9] Kushch, V.I. Int. J. Sol. Struct. 2004, 41, 885-906.
[10] Kushch, V.I. Int. J. Sol. Struct. 2005, 42, 5491-5512.
[11] Kushch,V.I.; Shmegera, S.V.; Mishnaevsky,L. Jr.Int. J. Sol.Struct.2008, 45, 2758-2784.
[12] Kushch,V.I.; Shmegera, S.V.; Mishnaevsky,L. Jr.Int. J. Sol.Struct.2008, 45, 5103-5117.
[13] Guagliano, M. J. Mater. Eng. Perform. 1998, 7, 183–189.
[14] Broberg, K.B. Comput. Mech. 1997, 19, 447–452.
[15] Ramakrishnan, N. Bull. Mater. Sci. 1997, 20, 885–900.
194 References
[16] Babusˇka, I.; Andersson, B.; Smith, P.J.; Levin, L.; Computer Methods in Appl. Mech. Eng. 1999, 172, 27–77.
[17] Bystro¨m., J. Composites: Part B 2003, 34, 587-592.
[18] Wu, Y.; Dong, Z. Mater. Sci. Eng. A. 1995, 203, 314–323.
[19] Sangani, A.S.; Mo, G. J. Mech. Phys. Sol. 1997, 45, 2001–2031.
[20] Matousˇ, K.; Lepsˇ, M.; Zeman, J; ˇSejnoha, M. Comp. Meth. Appl. Mech. Eng. 2000, 190, 1629–1650.
[21] ˇSejnoha, M.; Zeman, J. Comp. Meth. Appl. Mech. Eng. 2002, 191, 50275044.
[22] ˇSejnoha, M.; Zeman, J. Int. J. Eng. Sci. 2008, 46, 513-526.
[23] ˇSejnoha, M.; Zeman, J. Int. J. Sol. Struct. 2004, 41, 6549-6571.
[24] Gajdosˇ´ık, J.; Zeman, J.; ˇSejnoha, M. Probal. Eng. Mech. 2006, 21, 317329.
[25] Mura, T. Micromechanics of Defects in Solids;Martinus NijhoffPublishers: Dordrecht, NL, 1987; pp 388–392.
[26] Brdicˇka, M.; Samek, L.; Sopko, B. Mechanics of Continuum; Academia: Prague, CZ, 2000; pp 205–206.
[27] Eshelby, J.D. Proc. Royal Soc. London A 1957, 241, 376-396.
[28] Trebunˇa, F.; Bigosˇ, P. Intensification of Technical Capability of Heavy Supporting Structures; Technical University: Kosˇice, SK, 1998; pp 56– 58.
[29] Trebunˇa, F.; ˇSimcˇa´k, F.; Bursˇa´k, M.; Bocko, J.; ˇSarga, P.; Pa´stor, M.; Trebunˇa, P. Metalurgija 2007, 46, 41–46.
[30] Trebunˇa, F.; ˇSimcˇa´k, F.; Bocko, J.; ˇSarga, P.; Trebunˇa, P.; Pa´stor, M.; Mihok, J. Metalurgija2008, 47, 133–137.
References 195
[31] Trebunˇa, F.; Jadlovsky´, J.; Frankovsky´, P.; Pa´stor, M. Proc. 48th Int. Sci. Confer. Exp. Stress Anal. 2010, 435–442.
[32] Trebunˇa, F.; Hunady, R.; Znamena´kova´, M. Proc. 48th Int. Sci. Confer. Exp. Stress Anal. 2010, 443–449.
[33] Trebunˇa, F.; Hunady, R.; Znamena´kova´, M. Proc. 48th Int. Sci. Confer. Exp. Stress Anal. 2010, 451–458.
[34] Shin, H.; Earmme, Y.Y. Int. J. Fract. 2004, 126, L35–L40.
[35] Li, J.Y.; Dunn, M.L. Phil. Magaz. A 1998, 77, 1341–1350.
[36] Hajko, V.; Potocky´, L.; Zentko, A. Magnetization Processes; Alfa: Bratislava, SK, 1982; pp 37–45.
[37] Diko, P. Supercond. Sci. Technol. 1998, 11, 68–72.
[38] Diko, P. Supercond. Sci. Technol. 2004, 17, R45–R58.
[39] Diko, P. Mater. Sci. Eng. B 1998, 83, 149–153.
[40] Diko, P.; Krabbes, G. Supercond. Sci. Technol. 2003, 16, 90–93.
[41] Davidge, R.W.; Green, T.J. J. Mater. Sci. 1968, 3, 629–634.
[42] Selsing, J. J. Amer. Cer. Soc. 1961, 44, 419–419.
[43] Mastelaro, V.R.; Zanotto, E.D. J. Non-Crystal. Sol. 1996, 194, 297–304.
[44] Mastelaro, V.R.; Zanotto, E.D. J. Non-Crystal. Sol. 1999, 247, 79–86.
[45] Serbena, F.C.; Zanotto, E.D. J. Non-Crystal. Sol. 2012, 358, 975–984.
[46] Chmel´ık, F.; Trn´ık, A.; ˇStubnˇa, I.;, Pesˇicˇka, J. J. Eur. Ceram. Soc. 2011, 31, 2205-2209.
[47] Knapek, M.; Hu´lan, T.; Mina´rik, P.; Dobronˇ, P.; ˇStubnˇa, I.; Stra´ska´, J.; Chmel´ık, F. J. Eur. Ceram. Soc. 2016, 36, 221-226.
[48] Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity; McGraw-Hill: New York, USA, 1951; pp 213–225.
196 References
[49] Kuba, F. Theory of Elasticity and Selected Applications; SNTL/Alfa: Prague, CZ, 1982; pp 96–101.
[50] Trebunˇa, F.; ˇSimcˇa´k, F.; Jurica, V. Elasticity and Strength I; Technical University: Kosˇice, SK, 2005; pp 68–76.
[51] Trebunˇa, F.; ˇSimcˇa´k, F.; Jurica, V. Examples and Problems of Elasticity and Strength I; Technical University: Kosˇice, SK, 2002; pp 135–138.
[52] Trebunˇa, F.; ˇSimcˇa´k, F.; Jurica, V. Examples and Problems of Elasticity and Strength II; Technical University: Kosˇice, SK, 2005; pp 73–78.
[53] Skocˇovsky´, P.; Boku˚vka, O.; Palcˇek, P. Materials Science; EDIS: ˇZilina, SK, 1996; pp 75–79.
[54] Lekhnitskii, S.G. Theory of Elasticity of an Anisotropic Elastic Body; MIR Publishers: Moscow, RU, 1981; pp 36–42.
[55] Rektorys, K. Review of Applied Mathematics; SNTL: Prague, CZ, 1973; pp 156–162.
[56] Hearmon, R.F.S. Introduction to Applied Anisotropic Elasticity; The Clarendon Press: Oxford, UK, 1961; pp 12–15.
[57] Trebunˇa, F.; Jurica, V.; ˇSimcˇa´k, F. Elasticity and Strength II; Technical University: Kosˇice, SK; 2000, pp 36–39.
[58] Trebunˇa, F.; ˇSimcˇa´k, F.; Bocko, J. Resolved Examples and Problems of Elasticityand StrengthI; TechnicalUniversity: Kosˇice, SK, 2009;pp 65– 69.
[59] Novikova, S.I. Measur. Techniq. 1984, 27, 933–938.
[60] Ceniga, L. Meccanica 2015, 50, 2421–2430.
[61] Ceniga, L. Mech. Res. Commun. 2015, 50, 159–163.
[62] Ceniga, L. Thermal Stresses: Design, Behavior and Applications; Webb, A.R.; Ed.; Nova Science Publishers: New York, US, 2016; pp 105–152.