An Absolute Stability of Nanomechatronics System with Electroelastic Actuator

$39.50

S. M. Afonin, PhD
National Research University of Electronic Technology, Moscow Institute of Electronic Technology MIET, Moscow, Russia

Part of the book: Advances in Nanotechnology. Volume 27
Chapter DOI: 10.52305/YOPZ1532

Abstract

The electroelastic actuator on the piezoelectric or electrostriction effects is applied in nanomechatronics, nanotechnology, nanoresearch, nanobiology and adaptive optics. In this work the Yakubovich criterion absolute stability of the nanomechatronics system with the condition on the derivative for the hysteresis nonlinearity of the electroelastic actuator is used. This criterion with the condition on the derivative is development of the Popov absolute stability criterion. The stationary set of the nanomechatronics system with the electroelastic actuator for the hysteresis deformation is the segment of the straight line. This segment has the points of the intersection of the hysteresis partial loops and the straight line. An absolute stability conditions on the derivative for the nanomechatronics systems with the piezo actuator at the longitudinal, transverse and shift piezoeffect are determined. The condition of an absolute stability on the derivative for the nanomechatronics system with the electroelastic actuator under random influences is obtained. For the Lyapunov stable csystem the Yakubovich absolute stability criterion has the simplest representation of the result of the investigation an absolute stability of nanomechatronics system.

Keywords: absolute stability, deterministic and random influences, nanomechatronics system, electroelastic actuator, piezo actuator, hysteresis, stationary set


References

[1]Schultz, J., Ueda, J., Asada, H., Cellular Actuators. Butterworth-Heinemann Publisher: Oxford, 2017, 382 p.

[2] Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices; Mason, W., Ed., Academic Press: New York, 1964, pp. 515 p.

[3] Bhushan, B., Springer Handbook of Nanotechno Springer: Berlin, New York, 2004, 1222 p.

[4] Uchino, K., Piezoelectric Actuator and Ultrasonic Motors. Kluwer Academic Publisher: Boston, MA, 1997, 350 p.

[5] Preisach, F. Über die magnetische Nachwirkung. Zeitschrift für Physik 1935, 94(5-6), 277-302.

[6] Yakubovich, V. A., Popov’s method and its subsequent development. European Journal of Control 2002, 8(3) 200-208.

[7] Afonin, S. M., Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics 2006, 74(3), 943-948.

[8] Afonin, S. M., Static and dynamic characteristics of a multi-layer electroelastic solid. Mechanics of Solids 2009, 44(6), 935-950.

[9] Afonin, S. M., Static and dynamic characteristics of multilayered electromagnetoelastic transducer of nano- and micrometric movements. Journal of Computer and Systems Sciences International 2010, 49(1), 73-85.

[10] Zwillinger, D., Handbook of Differential Equations. Academic Press: Boston, 1989, 673 p.

[11] Afonin, S. M. In: Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Parinov, I. A., Ed., Nova Science Publisher: New York, 2015, 225-242.

[12] Afonin, S. M., A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. In: Advances in Nanotechnology. Vol. 19. Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2017, 259-284.

[13] Afonin, S. M., A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology, In: Advances in Nanotechnology. Vol. 22. Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2019, 169-186.

[14] Afonin, S. M., Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology, In: Advances in Nanotechnology. Vol. 25. Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2021, 251-266.

[15] Afonin, S. M., Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics 73(2), 307-313.

[16] Afonin, S. M. Absolute stability of a piezotransducer deformation control system. Journal of Computer and Systems Sciences International 2005, vol. 44(2), 266-272.

[17] Afonin, S. M., A generalized structural-parametric model of an electromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation of parametric structural circuits of an electromagnetoelastic converter for nano- and micrometric movement control systems. Journal of Computer and Systems Sciences International 2006, 45(2), 317-325.

[18] Afonin, S. M., Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady Physics 2008, 53(3), 137-143.

[19] Afonin, S. M., Dynamic characteristics of multilayer piezoelectric nano- and micromotors. Russian Engineering Research 2015, 35(2), 89-93.

[20] Afonin, S. M., Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators 2018, 7(1), 1-9.

[21] Afonin, S. M., Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators 2019, 8(3), 1-14.

[22] Afonin, S. M. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation 2020, 3(4), 1-7.

[23] Afonin, S. M. Coded control of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation 2021, vol. 4(3), 1-11.

[24] Afonin, S. M., Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics 2017, 5(1), 9-15.

[25] Afonin, S. M., Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics 2019, 7(2), 50-57.

[26] Afonin, S. M., A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications 2018, 6(3), 1-9.

[27] Afonin, S. M., A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transactions on Machine Learning and Artificial Intelligence 2020, 8(4), 23-33.

[28] Nalwa, H. S., Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers: Los Angeles, 2004, 10 Volumes.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!