A Piezoelectric Actuator with Coded Control for Nanotechnology

$39.50

S. M. Afonin, PhD – National Research University of Electronic Technology (Moscow Institute of Electronic Technology MIET), Moscow, Russia

Part of the book: Advances in Nanotechnology. Volume 29
Chapter DOI: https://doi.org/10.52305/JQHI2740

Abstract

In this chapter, a piezoelectric actuator with coded control is investigated for use in nanoresearch. A piezoelectric actuator with coded control is employed in nanotechnology, adaptive optics, astronomy, and nanobiomedicine. The mechanical and adjustment characteristics of a piezoelectric actuator with coded control are obtained. The transfer functions of a piezoelectric actuator are investigated. The transient characteristics of a piezoelectric actuator are used in nanotechnology. The mechanical and adjustment characteristics of a piezoelectric actuator with coded control are considered using the equations of piezoelectric effect and mechanical load. The transfer functions of a piezoelectric actuator with coded control are determined at elastic inertial load. The transient characteristics of a piezoelectric actuator are transferred using the rigidity and the mass of a load. The deformations of a piezoelectric actuator with coded control are obtained for longitudinal, transverse, ands hift piezoelectric effects.

Keywords: piezoelectric actuator, coded control, deformation, mechanical and adjustment characteristics, transfer function, transient characteristic, nanotechnology.


References

[1] Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher:Oxford, 2017, 382 p.

[2] Mason W. Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices; Mason W., Ed., Academic Press: New York, 1964, 515 p.

[3] Bhushan B. Springer Handbook of Nanotechnology. Springer: Berlin, New York,2004, 1222 p.

[4] Uchino K. Piezoelectric Actuator and Ultrasonic Motors. Kluwer Academic Publisher: Boston, MA, 1997, 350 p.

[5] Ueda J, Secord T, Asada H H. Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME Transactions on Mechatronics (2010) 15(5): 770-782.

[6] Sherrit S, Jones C, Aldrich J, Blodget C, Bao X, Badescu M, Bar-Cohen Y. Multilayer piezoelectric stack actuator characterization. Proceedings of SPIE – The International Society for Optical Engineering (2008) 6929: 776396.

[7] Uchino K. Multilayer technologies for piezoceramic materials. In: Advanced Piezoelectric Materials: Science and Technology. Uchino K., Ed., Woodhead Publishing in Materials, Elsevier: United Kingdom, 2017, 423-451.

[8] Afonin S M. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics (2006) 74(3): 943-948.

[9] Afonin S M. Static and dynamic characteristics of a multi-layer electroelastic solid. Mechanics of Solids (2009) 44(6): 935-950.

[10] Afonin S M. Static and dynamic characteristics of multilayered electromagnetoelastic transducer of nano- and micrometric movements. Journal of Computer and Systems Sciences International (2010) 49(1): 73-85.

[11] Zwillinger D. Handbook of Differential Equations. Academic Press: Boston, 1989,673 p.

[12] Afonin, S M. In: Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Parinov, I. A., Ed., Nova Science Publisher: New York, 2015,225-242.

[13] Afonin S M. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. In: Advances in Nanotechnology. Vol.19. Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2017, 259-284.

[14] Afonin S. M., A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology, In: Advances in Nanotechnology. Vol. 22.Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2019, 169-186.

[15] Afonin S M. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology, In: Advances in Nanotechnology. Vol. 25.Bartul, Z., Trenor, J., Eds., Nova Science Publisher: New York, 2021, 251-266.

[16] Afonin S M. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics (2006) 73(2): 307-313.

[17] Afonin S M. Absolute stability of a piezotransducer deformation control system. Journal of Computer and Systems Sciences International (2005) 44(2): 266 272.

[18] Afonin S M. A generalized structural-parametric model of an electromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation of parametric structural circuits of an electromagnetoelastic converter for nano- and micrometric movement control systems. Journal of Computer and Systems Sciences International (2006) 45(2): 317-325.

[19] Afonin S M. Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady Physics (2008) 53(3): 137-143.

[20] Afonin S M. Dynamic characteristics of multilayer piezoelectric nano- and micromotors. Russian Engineering Research (2015) 35(2): 89-93.

[21] Afonin S M. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators (2018) 7(1): 6.

[22] Afonin S M. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators (2019) 8(3): 52.

[23] Afonin S M. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation (2020) 3(4):53.

[24] Afonin S M. Coded control of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation (2021) 4(3): 47.

[25] Afonin S M. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics (2017) 5(1):9-15.

[26] Afonin S M. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics (2019) 7(2): 50-57.

[27] Afonin S M. Electroelastic actuator for nanomechanics. Russian EngineeringResearch (2020) 40(11): 893-900.

[28] Afonin S M. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications (2018) 6(3): 1-9.

[29] Afonin S M. Decision matrix equation and block diagram of multilayerelectromagnetoelastic actuator micro and nanodisplacement for communications systems, Transactions on networks and communications (2019) 7(3): 11-21.

[30] Afonin S M. Condition absolute stability control system of electromagnetoelasticactuator for communication equipment. Transactions on networks and communications (2020) 8(1): 8-15.

[31] Afonin S M. Characteristics of nanopositioning electroelastic digital-to-analog converter for communication systems. Transactions on Networks and Communications (2020) 8(6): 35-44.

[32] Afonin S M. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transactions on Machine Learning and Artificial Intelligence (2020) 8(4): 23-33.

[33] Afonin S M. Structural-parametric model of a piezoactuator for nanoscience and nanotechnology. European Journal of Applied Sciences (2021) 9(3): 26-36.

[34] Afonin S M. Rigidity of a multilayer piezoelectric actuator for the nano and microrange. Russian Engineering Research (2021) 41(4): 285-288.

[35] Nalwa H S. Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers: Los Angeles, 2004, 10 Volumes.

 

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!